

2007. 11. 23

Sensor Network OS Research Team

Embedded S/W Division

NanoQplus 2 (Nano OS)

User’s Guide

 Proprietary & Confidential /41
Sensor Network OS

Research Team

1

Contents

1. Supporting Hardware Platforms .. 3

1.1. ETRI-SSN (or NANO-24) .. 3

1.2. MICAz .. 6

1.3. ZigbeX .. 8

1.4. iSN-400N .. 10

1.5 usb-msp430 ... 13

1.6 Hmote2420 .. 14

1.7 Ubi-coin .. 16

1.8 Tmote-Sky ... 18

2 Nano OS Installation ... 19

2.5 Cygwin [Common].. 19

2.6 WinAVR (avr-gcc compiler) [ETRI-SSN, Nano-24, MICAz, ZigbeX, SKY-Z200] 19

2.7 mspgcc compiler [ISN-400N, Ubi-msp430, Ubi-coin, Hmote2420, Tmote-Sky] 20

2.8 PonyProg [ETRI-SSN, Nano-24] .. 20

2.9 Nano OS [Common] ... 21

2.10 Cygwin Setup [Common].. 21

2.11 Hyperterminal Setting [Common] ... 22

3 Developing Procedure ... 23

4 Sensor Programming with Nano OS ... 27

4.5 Basic Tests ($NOS_HOME/test-apps/platform-test/$PLATFORM/1_led) 27

4.6 LED Test ... 27

4.7 UART Sending Test ... 28

4.8 UART Recving Test .. 30

4.9 Sensor Test .. 31

4.10 Light, Temperature, Humidity, Gas Sensors .. 31

4.11 PIR sensor ... 32

4.12 Ultrasonic sensor ... 33

4.13 Kernel Test .. 34

4.14 MAC Test .. 36

4.15 Advanced programs ($NOS_HOME/apps) ... 38

4.16 Bi-directional Routing Test ($NOS_HOME/apps/reno_5nodes) .. 38

 Proprietary & Confidential /41
Sensor Network OS

Research Team

2

List of Figures

Figure 1. Main module of ETRI-SSN ... 3

Figure 2. ETRI-SSN components ... 4

Figure 3. example of sensor network application with ETRI-SSN nodes 5

 Proprietary & Confidential /41
Sensor Network OS

Research Team

3

1. Supporting Hardware Platforms

1.1. ETRI-SSN (or NANO-24)

Sensor nodes should be designed, considering several factors that involve the sensor network

environments. In addition, they have some constraints and limited capabilities. For example,

they are small in size, and their hardware cost and power consumption must be kept low. In

most sensor hardware platforms, they are battery-operated, the processor clock speeds are

slow (1-16MHz), and have a small amount of memory (2-10KB) without memory protected

hardware devices such as MMU (Memory Management Unit).

Figure 1 depicts the main module of ETRI-SSN (or Nano-24). ETRI-SSN and Nano-24 are

almost identical except pin-connections and additional external memory. The modules of

ETRI-SSN (or Nano-24) are small in size (AA-battery size in height). This module has an

Atmega128L CPU (one of AVR product series from ATMEL) with 4KB of SRAM, 128KB of

FLASH memory and 4KB of EEPROM, and CC2420 RF module (from Chipcon) for wireless

communication.

Figure 1. Main module of ETRI-SSN

Component Model Description

Sensor Board ETRI-SSN (or Nano-24) WSN Hardware Platform

CPU Atmega128L - Low-power

- 8 bit micro-processor

- 8MHz clock

Memory FLASH Internal 128KB

External 512KB

SRAM Internal 4KB

External 32KB

EEPROM 4KB

 Proprietary & Confidential /41
Sensor Network OS

Research Team

4

RF Chipcon CC2420 2.4GHz Zigbee

250Kbps data rate

USB RS-232 1Mbps

RS-485 3Mbps

TTL 3Mbps

ETRI-SSN (Nano-24) has 4 types of modules; 1) main module (computation and wireless

communication), 2) base interface module (connection with PC and main module), 3) sensor

module (data collection), and 4) actuator module (actuating an external devices). The

combination of those modules is referred to as a sensor node. The ETRI-SSN (smart sensor

node) is shown in Figure 2.

Figure 2. ETRI-SSN components

1) Main module : the core of the sensor node. It has the main CPU and RF chips for

computation and communication. All sensor nodes must have the main module.

2) Base interface module : the connection module between PC and the main module. The

base interface module can be used to transfer a new application program image from a PC to

the main module. This is referred to as “cross development environment”. It also provides the

serial communication interface between PC and the sensor node.

3) Sensor module : the sensing module that collects environmental data. Some detected data

are stored in the memory of the main module or transferred to the PC through wireless

 Proprietary & Confidential /41
Sensor Network OS

Research Team

5

communication. Sensor modules in ETRI-SSN are humidity sensor, light sensor, gas sensor,

temperature sensor, ultra-sonic sensor, and infrared sensor.

4) Actuator module : the actuating module that signals external devices for the application

purpose. For example, when an event occurs in a sensor environment, the actuator module

may send a command to an external device.

These modules being combined, ETRI-SSN node becomes one of the following nodes;

sensor node (sensor module + main module), routing node (main module), sink node (base

interface module + main module), or actuator node (actuator module + main module). An

example scenario of a sensor network application using these ETRI-SSN nodes is shown in

Figure 3. In this scenario, the sensor node sends the sensor module’s data to the sink node

through wireless communication. Several routing nodes may exist between a sensor node and

a sink node. The sink node receives the sensor node data, and sends to the PC connected to

the end user or the actuator node. The actuator node analyzes the transmitted data for

application purposes (e.g. turning on a fan or controling a lamp).

Figure 3. example of sensor network application with ETRI-SSN nodes

 Proprietary & Confidential /41
Sensor Network OS

Research Team

6

1.2. MICAz

The MICAz is a 2.4 GHz, IEEE 802.15.4 compliant, Mote module used for enabling low-

power, wireless, sensor networks. The MICAz Mote features several new capabilities that

enhance the overall functionality of Crossbow’s MICA family of wireless sensor networking

products. The MICAz and its interface board are shown in Fig.4.

FFFFigure igure igure igure 4444 MICAMICAMICAMICA----Z Sensor Board and InterfaceZ Sensor Board and InterfaceZ Sensor Board and InterfaceZ Sensor Board and Interface

Component Model Description

Sensor Board MICA-Z WSN Hardware Platform

CPU Atmega128L - Low-power

- 8 bit micro-processor

- 8MHz clock

Memory FLASH Internal 128KB

External 512KB

SRAM Internal 4KB

External 32KB

EEPROM 4KB

RF Chipcon CC2420 2.4GHz Zigbee

250Kbps data rate

USB RS-232 1Mbps

RS-485 3Mbps

TTL 3Mbps

 Proprietary & Confidential /41
Sensor Network OS

Research Team

7

MICAz has the following characteristics.

• IEEE 802.15.4, Tiny, Wireless Measurement System

• Designed Specifically for Deeply Embedded Sensor Networks

• 250 kbps, High Data Rate Radio

• Wireless Communications with Every Node as Router Capability

• Expansion Connector for Light, Temperature, RH, Barometric Pressure,

Acceleration/Seismic, Acoustic, Magnetic and other Crossbow Sensor Boards

The block diagram of MICAz (MPR2400CA) shown below.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

8

1.3. ZigbeX

The sensor network combining sensor system, embedded system and RF system is used

wirelessly in connection with the existing network and is recognized as a leading system that

will provide a solution suitable for the ubiquitous age. Therefore, in the educational field, the

demand for the educational board of the wireless sensor network is on the increase. ZigbeX of

Hanback Electronics Co., Ltd provides diverse linkage and storage devices by loading X-scale

CPU of recognized powerful performance. Also, it provides an authentic wireless sensor

network that connects the sensor information on the Zigbee supporting mote to a farther

server by constructing an autonomous communication network. Besides, it can be connected

to any sensor or actuator as it is designed in consideration of the capacity of sensors

ZigbeX has the following chief features.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

9

. Use 400MHz X-scale CPU with powerful performance

. Stable high performance platform (used as an embedded platform in colleges nationwide)

. Provide diverse linkages (USB, LAN, Bluetooth, serial, IrDA, RF)

. Provide diverse storage facilities (USB, SDRAM, FLASH)

. Provide a large-scale LCD for GUI(640x480)

. Touch screen method

. Supported with PS2 keyboard

. Supported with diverse USB 2.0 devices (Wireless, Bluetooth, memory, Hard disk) .

Supported with Zigbee

. Equipped with REID

. Capable of being geared with SEM 21, RF, and Bluetooth

Hardware Item Description

Micro Controller

ATmega128

(program 128Kbyte SDRAM 2KB EEPROM 4KB AD 10bit 8

Channels)

RF part CC2420 2.4GHz Zigbee(IEEE 802. 15. 4)

Security DSSS

Transfer BPS Maximum 250K BPS

Base sensor
Basically equipped with temperature, illumination and humidity

sensors, and RTC

Power 1.5V AA 2ea or 1.2V Rechargeable battery 2ea

Length 40mm × 70mm

 Proprietary & Confidential /41
Sensor Network OS

Research Team

10

1.4. iSN-400N

iSN-400N is a low-power and high performance mote, which includes temperature, motion

and rain sensors. It uses 250Kbps 2.4GHz IEEE 802.15.4 Chipcon CC2420 RF chip.

Component Model Description

Node Board iSN-400N Hardware Platform

CPU MSP430F1611 - Low-power

- 8 bit micro-processor

- 32.768 [Khz] clock

Memory FLASH 48KB

SRAM 10KB

Battery CR123 3[V] , 1400[mAh]

RF Chipcon CC2420 2.4GHz Zigbee

 Proprietary & Confidential /41
Sensor Network OS

Research Team

11

Component Model Description

Sensor Board iSN-430S Hardware Platform

Temp NTC-103F343F
centercentercentercenter----TempTempTempTemp 25.025.025.025.0℃/10.00KΩ/10.00KΩ/10.00KΩ/10.00KΩ

β-Tolerance 1.00%1.00%1.00%1.00%

-40 ~ +120 ℃

Rain iSN-202R 60[mm] circle sensor

Motion Sensor MMA7260Q X, Y and Z axis of accleration sensor

Component Model Description

Inteface board iSN-400U Hardware Platform

 Proprietary & Confidential /41
Sensor Network OS

Research Team

12

Temp NTC-103F343F
centercentercentercenter----TempTempTempTemp 25.025.025.025.0℃/10.00KΩ/10.00KΩ/10.00KΩ/10.00KΩ

β-Tolerance 1.00%1.00%1.00%1.00%

-40 ~ +120 ℃

USB FT232B Serial Debug

Power USB or DC jack USB or DC jack power supply

input DC 5~ 12[V]

 Proprietary & Confidential /41
Sensor Network OS

Research Team

13

1.5 usb-msp430

Hanback Electronic develops the new ultra-low power wireless sensor platforms (HBE-

Ubi-MSP430, Ubimote) based on TI MSP-430 CPU and CC2420 RF. HBE-Ubi-MSP430 can

be utilized in the education, research and performance evaluation area related the ubiquitous

technology. Users can easily learn wireless sensor networks, MAC embed system and sensing

control mechanisms by the platform and its various examples.

. Public MSP430 CPU

. Stable 8bit high performance platform

. External data storage (SDRAM, FLASH)

. PCB pattern antenna

. Size : 40 mm x 70 mm

. 1.2v recharge battery

. Support external extend port

. Support external antenna port to enhance a communication distance

. Support various sensors (Temp. Humi, Photo, Light)

 Proprietary & Confidential /41
Sensor Network OS

Research Team

14

1.6 Hmote2420

Hmote2420 is a low-power and high performance mote, which includes temperature,

humidity, light and tone sensors. It uses 250Kbps 2.4GHz IEEE 802.15.4 Chipcon CC2420

RF chip.

The features of Hmote2420 are shown below.

• Interoperable with other IEEE 802.15.4 devices for processing information

• Using Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

• Onboard antenna (50m range indoors / 125m range outdoors)

• Ultra-low power consumption

 Proprietary & Confidential /41
Sensor Network OS

Research Team

15

• Fast wakeup from sleep mode (<6us)

• Enabling to attach a variety of sensor boards though connectors

• Including optional SMA antenna connector

• Programming and data collection via USB

Item Description count

H/W

TI MSP430 16bit Processor

 - Speed : 8MHz/32KHz

 - Program Space : 48kb, RAM : 10kB

1

RF Chip CC2420

 - Frequency : 2400~2483MHz

 - Data rate : 250kbps

1

Internal antenna 1

External antenna Interface 1

USB Interface 1

Extension connector 1

 Proprietary & Confidential /41
Sensor Network OS

Research Team

16

1.7 Ubi-coin

Ubi-Coin, developed by Hanback Electronics Co ., Ltd., is a micro USN unit based on the low

power micro processor MSP430. It is equipped with a photo sensor and CC2420 RF chip th at

provides the IEEE 802.15 .4 PHY function . Ubi-Coin configures a wireless sensor network

between nodes based on the IEEE 802.15.4 MAC d eveloped by Hanback Electronics Co., Ltd. It

enables download and serial communications with PC through the USB port. Use a micro USN

equipment & low-power hardware, and convert various modes through buttons. HBE-Ubi-Coin is

designed to be embedded on various hardwares, and its size is very small. (3cm x 3cm). It is

equipped with a luminance sensor basically. Besides it, various sensors can be mounted on it, too.

CPU MSP430 1611

Flash 48KByte + 256Byte

RAM 10KByte

RF MODEM CC2420

RF Power 0dBm

RF range Maximum 120m(usually 60m)-outdoor

Push Button 1ea

 Proprietary & Confidential /41
Sensor Network OS

Research Team

17

Color LED(option) Full Color LED 1ea(12 colors indicated)

Beep(option) Piezo(96 stage)

Power 3V DC

 Proprietary & Confidential /41
Sensor Network OS

Research Team

18

1.8 Tmote-Sky

Reliable low-power wireless sensor networking eases development

and deployment.

Tmote Sky is the next-generation mote platform for extremely low

power, high data-rate, sensor network applications designed with

the dual goal of fault tolerance and development ease. Tmote Sky

boasts the largest on-chip RAM size (10kB) of any mote, the first IEEE 802.15.4 radio, and

an integrated on-board antenna providing up to 125 meter range. Toward development ease,

Tmote Sky provides an easy-to-use USB protocol for programming, debugging and data

collection.

Tmote Sky offers a number of integrated peripherals including a 12-bit ADC and DAC, Timer,

I2C, SPI, and UART bus protocols, and a performance boosting DMA controller. Tmote Sky

offers a robust solution with hardware protected external flash (1Mb in size), applications

may be wirelessly programmed to the Tmote Sky module. In the event of a malfunctioning

program, the module loads a protected image from flash.

Key Features

• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver

• Interoperability with other IEEE 802.15.4 devices

• 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

• Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

• Integrated onboard antenna with 50m range indoors / 125m range outdoors

• Optional Integrated Humidity, Temperature, and Light sensors

• Ultra low current consumption

• Fast wakeup from sleep (<6us)

• Hardware link-layer encryption and authentication

• Programming and data collection via USB

• 16-pin expansion support and optional SMA antenna connector

• TinyOS support : mesh networking and communication implementation

• FCC modular certification : conforms to all US and Canada regulations

 Proprietary & Confidential /41
Sensor Network OS

Research Team

19

2 Nano OS Installation

To install Nano OS, some preliminary work is needed. Currently, Nano OS has been

installed in MS-Windows environments. However, it can be installed on Linux systems very

easily because Nano OS is based on cygwin environments. The following packages should be

pre-installed for Nano OS.

1. Cygwin : a linux emulator for Windows

2. Compiler : You should select one of the following compilers depending on your hardware

(1) [ETRI-SSN, Nano-24, MICAz, ZigbeX, SKY-Z200] Winavr : avr-gcc compiler for

Windows

(2) [ISN-400N, Ubi-msp430, Ubi-coin, Hmote2420, Tmote-Sky] Mspgcc : mspgcc compiler

for Windows

3. In-System Programming tool for fusing : You should select one depending on your

hardware

(1) [ETRI-SSN, Nano-24] PonyProg2000 (parallel cable connection) (ponyprog)

(2) [ETRI-SSN, Nano-24] Avrdude (serial connection through USB interface board)

(3) [MICAz] Uisp (serial connection through USB interface board)

(4) [ISN-400N] Mspfet (serial connection through USB interface board)

(5) [Ubi-msp430, Ubi-coin, Hmote2420] Mspbsl (serial connection through USB interface

board)

2.5 Cygwin [Common]

Cygwin is a windows program from GNU, which enables us to emulate linux environment

on Windows systems. Because it provides many unix-compatible utilities, developers are

able to use them (e.g. X window, vi editor, gnu make, latex, etc.) in MS-windows. To install

Cygwin, go to the website, http://www.cygwin.com, and download necessary packages.

Cygwin has a lot of optional packages. For Nano OS, it is recommended to download editor

tools (vi or emacs), programming development tools (gcc, make), and shells (bash or csh). If

you are not an expert for installing Cygwin, it is desirable to download and install all

packages. However, it will take much time. The common path of installation is “c:\cygwin”.

2.6 WinAVR (avr-gcc compiler) [ETRI-SSN, Nano-24, MICAz, ZigbeX, SKY-Z200]

WinAVR is an integrated tool for AVR series. It contains an avr-gcc

compiler, which is necessary to compile Nano OS application

programs. You can download it at the website,

 Proprietary & Confidential /41
Sensor Network OS

Research Team

20

http://winavr.sourceforge.net. Download the latest WinAVR program (later than April. 4th,

2006). Otherwise, you will see many warning/error messages. The common path is

“c:\WinAVR”.

2.7 mspgcc compiler [ISN-400N, Ubi-msp430, Ubi-coin, Hmote2420, Tmote-Sky]

MSPGCC is a completely free and unlimited C compiler for TI's MSP430

series of microcontrollers. There are NO limitations. This is a port of the GNU

C Compiler (GCC) and GNU Binutils (as, ld) for the embedded processor

MSP430. Tools for debugging and download are provided (GDB, JTAG and

BSL). It is necessary to compile Nano OS application programs. You can download it at the

website, http://mspgcc.sourceforge.net . Download the latest mspgcc-win32 program. The

common path is “c:\mspgcc”. And copy c:\cygwin\bin\cygwin1.dll to c:\mspgcc\bin.

2.8 PonyProg [ETRI-SSN, Nano-24]

When you compile our sensor program, a program image (hex file) is created. Finally, you

need to store the program in a sensor hardware board. In order to put the program image

developed on a PC into a sensor board, you need to use an extra Windows program. For this

task, AVR chips supports ISP (In-System Programming) that enables you to directly program

the FLASH memory. One of the most popular ISP programs for AVR chips is “PonyProg”

series. You can use a PonyProg2000 program to insert your program image into the ETRI-

SSN sensor hardware. The program can be downloaded at the website,

http://www.lancos.com/ppwin95.html. The common path is “c:\Program

Files\PonyProg2000” After installing it, you should make some preparations for its operation.

Refer to the following procedure for ETRI-SSN (or Nano 24).

(1) The type of Chip : AVR micro � ATmega128

(2) The calibration � Select “Yes”

 Proprietary & Confidential /41
Sensor Network OS

Research Team

21

(3) Interface setup � Select “Parallel” and “avr ISP I/O”

2.9 Nano OS [Common]

Nano OS package is provided as a form of nos-x.y.z.tgz. Uncompress this file at the location

that you want to install. For example, if you have a nos-xy.yz.tgz file at c:/ path.

$ cd c:/

$ tar xzvf nos-x.y.z.tgz

Then, you will see nos-x.y.z at c:/ directory.

2.10 Cygwin Setup [Common]

Pop up a cygwin window, and edit the /etc/profile (or ~/.bash_profile) file for your

environment. NOS_HOME is the path of home directory for Nano OS, and the ISPPATH is

the path of PonyProg2000. You need to change the version part of nos-x.y.z into the one that

you would like to install.

$ vi ~/.bash_profile

NOS_HOME=”/cygdrive/c/nos-2.0.0” # change the version part, x.y.z in nos-x.y.z

ISPPATH=”/cygdrive/c/Program Files/PonyProg2000” # this is for [ETRI-SSN, Nano-

24]

 Proprietary & Confidential /41
Sensor Network OS

Research Team

22

PATH=$PATH:$ISPPATH # this is for [ETRI-SSN, Nano-24]

export NOS_HOME PATH

2.11 Hyperterminal Setting [Common]

In PC environments, after Windows starts, the hyper-terminal program is installed. This

program is located in the path, Windows Start � Program � Accessories �

Communication � Hyperterminal. The hyper-termial is a program for serial

communications. When debugging a sensor program, the hyper-terminal program can be

useful (It can print useful information from sensor board). Thus, this progam is a prerequisite

for Nano OS. For UART communication, there must be a connection between PC and a

sensor node by, for example, a serial cable. The notable point is that the hardware control is

set to “none” The bit rate or other options can be changed if necessary in Nano OS. In most

cases, the following setting is enough: 9600 baud rate, 8 data bits, parity none, 1 stop bit and

no hardware flow control.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

23

3 Developing Procedure

This includes instructions how to develop Nano OS application programs.

1. Make your own application directory. Typically, application programs have been

written under “$NOS_HOME/apps/” or “$NOS_HOME/test-apps/”

2. Make an application program using ‘C’ language.

3. Link ‘$NOS_HOME/Makefile.kconf’ to ‘./Makefile’.

4. Configurate your application program for code optimization.

- Type ‘make menuconfig’ for this step. ‘kconf.h’ will be generated automatically. The

‘kconf.h’ is the configuration file that describes Nano OS modules required by

application programs. Nano OS consists of several modules that can be plug-in or plug-

out. Please select only modules that you will really use in your application programs for

code optimization.

5. Make a library for your application. Type ‘make lib’. (Note that you can omit this

process.)

6. ‘make’ will compile your codes and generate hexa image file (‘your_appl.rom’)

7. Type ‘make burn port=<port-option>’ to load your application program image into your

sensor node. The <port-option> depends on the platform and interface that you have.

(1) [ETRI-SSN, Nano-24] – use ‘make burn port=lpt1’ for parallel connection. In

case of use connection by USB interface board, you should use ‘make burn port=usb’

(2) [MICAz] – use ‘make burn port=comX’, where X is the serial port number

connected.

(3) [ISN-400N] – move to use ‘make burn’. Then, you will see MspFet.exe, which is a

window program for downloading intel hexa-formated file. Run this program. Follows

the next steps for downloading.

a) select a proper model : (msp430x1611)

b) select an application hexa-file (*.hex) by clicking ‘Open’ tab.

c) click ‘Erase’ and ‘Program’ tabs. Or you can do that at once by clicking ‘Auto’

(4) [Ubi-msp430, Ubi-coin, Hmote2420] – use ‘make burn port=comX’, where X is

the serial port number connected.

Write your own application programs, e.g. led.c. In Nano OS, sensor application programs

are written in C and the coding format is shown in Fig. 8. At the uppermost of application

program code, the “nos.h” header file must be included in the program. In addition, the

NOS_INIT() must be placed before writing your own codes in the main program. This is the

common coding format that all Nano OS application programs must adhere to.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

24

#include “nos.h”

int main (void)

 {

 nos_init();

………….

 /* your codes */

………….

 return 0;

 }

Figure 5. Coding format of Nano OS application programs

Figure 6. The development step 1, 2, 3, 4.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

25

Figure 7. More details of step 4.

Figure 8. The development step 5, 6, 7.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

26

Please make sure that PC is connected to the sensor node by a parallel cable when you

upload the image to the sensor node. “PonyProg2000” immediately moves the ROM image to

sensor node. If there are any problems at this time, check if PonyProg2000 program has been

properly installed in the previous section or if the status of parallel cable, sensor node, etc. are

OK.

Figure 9. Development Process

 Proprietary & Confidential /41
Sensor Network OS

Research Team

27

4 Sensor Programming with Nano OS

Using a variety of functions that Nano OS is provided with, you can write sensor network

appl. PGMs(application programs). Here is a short description of writing simple sensor appl.

PGMs

4.5 Basic Tests ($NOS_HOME/test-apps/platform-test/$PLATFORM/1_led)

In Nano OS directories, there can be seen various test programs that you can look into. In

this section detailed explanations for some of these programs. Code analysis will be followed

by the execution results.

4.6 LED Test

(1) Code Analysis

 This code is written for testing LEDs on a sensor board (Here, ETRI-SSN). It is assumed

that there are three LEDs in the sensor board. “led_on(n)” and “led_off(n)” macros will turn

on and off n-th LED, respectively. This example shows that three LEDs on the sensor board

blink repeatedly.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

28

(2) Result

 Run this example, you will see three LEDs are blinking in the following pattern; OXX, XOX

and XXO, where O (LED on) and X (LED off). The delay_ms() function delays CPU for the

given period. Without this function, the state changes of the LEDs will occur so fast that we

cannot see them blinking.

4.7 UART Sending Test

(1) Code Analysis

 This code is written for testing UART transmission. It shows the various execution results of

“uart_putc”, “uart_puts”, “uart_puti”, “uart_putu” and “uart_printf”. In the ‘while’ loop, there

are two ‘for’ statements. One ‘for’ statement prints 5 hyphen(‘-‘) characters, while the other

 Proprietary & Confidential /41
Sensor Network OS

Research Team

29

prints a backspace (0x08 in ASCII) and blank characters. The latter erases the hyphen(‘-‘)

character. The uart_puts() and uart_putc() functions print characters on UART terminal.

(2) Result

 After printing some test results, hyphen(‘-‘) characters are sequentially printed to and

removed from the UART terminal.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

30

4.8 UART Recving Test

(1) Code Analysis

 This code tests UART reception. “uart_rx_handler” is called when UART interrupt occurs.

UART ISR callback function is registered by “uart_getc_callback”. Note that you must call

“enable_uart_rx_intr” to call the registered function or “disable_uart_rx_intr” to disable it.

Even if “enable_uart_rx_intr” is called, “uart_gets” overrides UART callback setting (by

 Proprietary & Confidential /41
Sensor Network OS

Research Team

31

disabling it) and then receives a string from a keyboard until ‘ENTER” key is pressed. After

that, UART callback setting is resotred.

(2) Result

 You can type a string of 10 characters. Type ‘ENTER’ to terminate. After that, you have 10

seconds to turn on or off LEDs.

4.9 Sensor Test

4.10 Light, Temperature, Humidity, Gas Sensors

These four sensors use ADC (Analog Digital Converter) to get sensor data. Sensor data is

available after ADC conversion is completed. If the data from one of the sensors is detected

by polling, MCU takes the data immediately.

(1) Code Analysis

 To activate each sensor, call the XXX_power_on(), where XXX is one of light, temp, gas,

hum or so. Likewise, to deactivate each sensor, you should call XXX_power_off(). These two

functions are used in pair. The delay_ms(1000) delays the CPU clock for 1 second to delay

the program. The XXX_get_data() obtains sensor data from the ADC, where XXX is one of

light, temp, hum and gas or so. It uses ADC to get sensor data.

(2) Result

 You can test each sensor as follows;

 Proprietary & Confidential /41
Sensor Network OS

Research Team

32

1) For light sensor, cover the light sensor by your hand so that light cannot reach the sensor.

The light sensor value decreases.

2) For temp. sensor, hold your finger onto the temperature sensor. The heat of your hand will

be transferred to the temperature sensor, which will increase the sensor data.

3) For humidity sensor, blow your breath softly on the humidity sensor. The vapor in your

breath will increase the sensor data.

4) For gas sensor, move the gas sensor close to the lighter gas. The gas of the lighter will

increase the sensor data.

4.11 PIR sensor

(1) Code Analysis

Unlike the previous sensors, the pir sensor works by an interrupt. After the pir sensor is

activated, the program just runs the loop until an interrupt occurs. If the pir sensor detects an

object, an interrupt occurs and the pir_intr_handler() function will be invoked. The

pir_intr_handler() is a callback function that programmers have to write.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

33

(2) Result

 If you run this program, the program will print ‘- \ | /’ repeatedly on the UART terminal until

an interrupt occurs. If your hand is moving over the pir sensor, the interrupt handler will be

invoked to print “PIR Detected” on the UART terminal.

4.12 Ultrasonic sensor

(1) Code Analysis

The US sensor also works by an interrupt. Entering the while loop, it calls the us_trigger()

function, which triggers a US transmission signal into the air, and waits until an interrupt

occurs. If the US signal is returned, the interrupt handler us_intr_handler() is invoked. This

handler should be written by the programmer. Then, the us_get_data() function will get the

distance from the US sensor to the object. This function calculates the distance using the

round trip time of the signal.

(2) Result

 When you run this program, you will see the UART terminal prints US sensor data

repeatedly. US sensor measures the distance to object, so if your hand gets closer to the US

sensor, the sensor value decreases.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

34

4.13 Kernel Test

In kernel test, we introduce only thread testing.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

35

(1) Code Analysis

 3 threads are created in main function. Each thread will execute task1(), task2() and task3(),

respectively. The stack size of each thread has a fixed value, DEFAULT_STACK_SIZE that is

defined in “arch.h”. If a thread uses the thread stack with larger size than

DEFAULT_STACK_SIZE, the stack size must be increased (change ‘0’ of arg3 to any

number of additional stack size). Though, in most cases it will be enough.

Note that the 3 threads have the same priorities. This implies that threads will be run in a

round robin fashion. Afterwards, when the sched_start() function is called, the threads will

start to run, while performing context switching,.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

36

4.14 MAC Test

Two sensor nodes are required to test MAC applications. One is the sender node, while the

other is the receiver node. Thus, two source codes (tx.c and rx.c) are prepared, each of which

should be installed to their own nodes.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

37

(1) Code Analysis

 As a preliminary task, each node should initialize MAC to set the related variables(ie; RF

channel, PAN ID, node ID, etc) to their default values. In this example, the common channel

is 26, PAN ID is 0x2420. The sender node gets an ID of 0x1234, while the receiver node’s ID

is set to 0x5678. The mac_init() function performs this task.

 On sender side : The sender node sends 10 bytes of numeric characters with an ACK request.

Since the receiver does not want to receive ack messages, the mac_tx_noack() function is

called. In the while loop, the mac_tx() function sends data and checks the ACK packet to see

if the data is transmitted correctly.

 On receiver side : To receive data, mac_rx() function is called. After receiving the rf message,

the receiver node prints the values in the message.

(2) Result

 Prepare two sensor nodes and see results after downloading the application program image.

Please try it by yourself! The programs will run as explained.

 Proprietary & Confidential /41
Sensor Network OS

Research Team

38

4.15 Advanced programs ($NOS_HOME/apps)

There are several programs to help you to write a complex sensor network program.

4.16 Bi-directional Routing Test

($NOS_HOME/apps/reno_5nodes)

Five sensor nodes are required to execute this routing test application. Three nodes (11, 12

and 31) exchange messages with each other through two router nodes (21 and 22) (Refer to

the figure shown below). Five source codes - “sender11.c”, “sender12.c”, “router21.c”,

“router22.c” and “sender31.c”, are prepared accordingly. Each code should be installed in the

corresponding node.

For instance, the source code of “sender31.c” is as follows..

node 11

node 12

node 21

node 22

node 31

11

12

21

22

31

ID : sensor node

 Proprietary & Confidential /41
Sensor Network OS

Research Team

39

(1) Code Analysis

In this routing test, there are five nodes. The RF channel and pan ID of all these nodes are set

to 26 and 312, but they have unique IDs – 11, 12, 21, 22 and 31. As shown in the following

figure, the nodes 11, 12 and 31 exchange messages with each other through nodes 21 and 22.

Each node can receive data from only the node ID of which value is between

‘min_permit_id’ and ‘max_permit_id’, which are the parameters of nwk_init() function. The

following table shows the range of permitted ID of nodes in this example.

Node ID min_permit_id max_permit_id

 Proprietary & Confidential /41
Sensor Network OS

Research Team

40

11 0 29

12 0 29

21 11 39

22 11 39

31 21 49

 The nodes 11 and 12 execute task1 or task2 respectively. The task1 periodically sends ‘2’

messages to the node 31, and the rf_callback() receives RF messages and toggles LEDs

according to the received message types.

The node 31 executes two tasks in parallel – task1 and task2. The task1 sends ‘2’ messages

to the node 11, and the task2 sends ‘3’ messages to the node 12. Finally, the task3 receives RF

messages and toggles LEDs.

The nodes 11 and 12 forward messages that are generated by the nodes 11 and 12 to the node

31, and vice versa. The tasks do not handle the packet routing. The routing function is

implicitly carried out in the routing module of Nano OS (The routing codes does not appear

explicitly in the application code).

 If a node cannot handle the received data immediately due to high data rate, the data is

temporarily stored in an internal queue for post-processing.

(2) Result

Prepare five sensor nodes. After compiling each source codes, install the generated images in

the nodes. Turn on all the nodes. Then the LEDs of nodes 11, 21 and 31 will start blinking.

 END 

