

2007. 11. 23

Sensor Network OS Research Team

Embedded S/W Division

NanoQplus 2 (Nano OS)

Specification

 Proprietary & Confidential /79
Sensor Network OS

Research Team

1

Contents

1. Introduction ... 4

2. Nano OS .. 7

2.1. Architecture ... 7

2.2. Key Modules ... 8

2.3. Functionalities .. 11

3. Nano OS Details .. 12

3.1. Kernel .. 12

3.1.1. OS initialization .. 12

3.1.2. Memory Management ... 12

3.1.3. Thread Management .. 14

3.1.4. Inter-Thread Communication (ITC) .. 22

3.1.4.1. Message Queue ... 22

3.1.4.2. Semaphore ... 27

3.1.5. Power Management ... 30

3.1.6. Kernel Timer ... 31

3.2. Network ... 34

3.2.1. MAC .. 34

3.2.1.1. Nano MAC .. 34

3.2.2. Routing .. 39

3.2.2.1. RENO Routing .. 39

3.3. Nano Hardware Abstract Layer (nHAL) ... 48

3.3.1. MCU dependent modules .. 48

3.3.2. MCU internal peripherals .. 50

3.3.2.1. ADC .. 50

3.3.2.2. UART .. 51

3.3.2.3. SPI ... 54

3.3.2.4. EEPROM... 58

3.3.3. Sensor .. 60

3.3.3.1. Gas sensor ... 60

3.3.3.2. Humidity sensor .. 61

3.3.3.3. Light sensor ... 62

3.3.3.4. Temperature sensor ... 63

3.3.3.5. Infrared Sensor .. 64

3.3.3.6. Ultrasonic sensor ... 65

 Proprietary & Confidential /79
Sensor Network OS

Research Team

2

3.3.4. Actuator ... 67

3.3.4.1. Module initialization ... 67

3.3.4.2. Actuator control... 67

3.3.5. RF communication .. 68

3.3.5.1. RF chip driver (CC2420) ... 68

3.3.5.2. RF pin configuration ... 74

3.3.6. Misc ... 76

3.3.6.1. LED ... 76

3.3.6.2. Battery power status .. 77

 Proprietary & Confidential /79
Sensor Network OS

Research Team

3

List of Figures

Figure 1. A sensor network model .. 5

Figure 2. Nano OS architecture .. 7

Figure 3. Module Dependency .. 9

Figure 4. Heap memory architecture .. 12

Figure 5. Free block list .. 13

Figure 6. Thread Queue .. 15

Figure 7. TCB structure .. 17

Figure 8. Thread state transition diagram ... 18

Figure 9. Message queue ... 23

Figure 10. Message queue structure .. 23

Figure 11. Semaphore ... 27

Figure 12. Semaphore structure .. 27

Figure 13. MAC frame structure ... 34

Figure 14. Receiver queue .. 35

Figure 15. Routing Message Structure .. 39

Figure 16. Data Queue on Receiver Side .. 40

 Proprietary & Confidential /79
Sensor Network OS

Research Team

4

1. Introduction

In recent years, the availability of cheap and small micro sensor node, and low power

wireless communication enabled the large-scaled deployment of sensor nodes in Wireless

Sensor Networks (WSN). WSN allows us to address, monitor, and eventually control a wide

aspect of real-world problems. For instances, there are such applications as follows:

monitoring health condition of our elder living independently at their home, tagging small

animals unobtrusively, and tracking endangered species across large remote habitats, etc.

For practical use of these applications in real world, making the small-sized sensor nodes is

important and, furthermore, through software algorithms supporting low-power mechanism,

increasing the life-time of sensor nodes is more crucial in WSN. When sensor network

programmers make a program for sensor network applications, the development of

application is very difficult without any middleware or operating system. Therefore, we

developed a nano operating system, referred to as Nano OS, to support the flexible and

convenient programming mechanism of these low-power software algorithms.

 There are a lot of research activities world-wide for sensor operating systems. Levis et al.

proposed Berkeley’s Tiny OS architecture designs and implementations. TinyOS is a well-

known operating system and the Mote platform has been widely used in various applications.

It features a component based architecture which enables rapid innovation and

implementation while minimizing code size as required by the severe menmory constraints

inherent in sensor networks. Han et. al. proposed a SOS operating system that consists of

dynamically loadable modules and a kernel, which implements messaging, dynamic memory,

and module loading and unloading, among other services. SOS is an operating system for

Mote-class wireless sensor networks. Bhatti et al. proposed a MANTIS operating system.

MANTIS provides a thread-based embedded operating system for wireless sensor networks.

MANTIS supports preemptive multithreading. It also enables sensor nodes to natively

interleave complex tasks with time-sensitive tasks, therby mitigating the bounded buffer

producer-consumer problem.

 Nano OS is a new multi-threaded, lightweight, and low-power sensor network operating

system integrated with a general-purpose single-board hardware platform to enable flexible

and rapid prototyping of WSN. The key design goals of Nano OS are ease of use, i.e. a small

learning curve that encourages novice programmers to rapidly prototype novel sensor network

applications, as well as flexibility, so that expert researchers can continue to adapt and extend

the hardware/software system to apply the needs of their own advanced research.

In this documentation, we provide all about Nano OS; a philosophy, design issues,

architecture, implementation details, installation and how-to-use it for sensor network

applications.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

5

Figure 1. A sensor network model

Figure 1 shows a sensor network model that sensor data in environments are gathered and

transferred to the end user. Usually, sensor nodes are formed into a group to communicate

sensor data more efficiently. The sensed data is sent to the DAQ (Data Acquisition) server or

context server for being monitored. Since the servers are connected with the end users directly

or indirectly via wireless network or Internet, applications can use them for their own purpose.

Wireless sensor networks consist of hundreds or even thousands of very small sensor nodes.

Since this sensor network model is fundamental in ubiquitous environments, Nano OS is

based on this model.

Sensor operating systems installed on various sensor nodes must provide optimized

environments for a specific sensor application to build wireless sensor network platforms

efficiently, and support many kinds of devices and middlewares. The followings are design

considerations in a sensor operating system.

1) Performance : Sensor nodes have several hardware constraints such as small memory,

battery-powered and wireless communication. It will be a difficult task to have superior

performance due to the hardware constraints. Nevertheless, good performance is a primary

issue in sensor network research area. The kernel image should be quite small (with less than

10KB) and the sensor node with two AA-battery must be operated up to a few months by

efficient power management. Also, sensing data needs to be transferred as fast as possible

even in wireless communication.

2) Optimization : A sensor network consists of hundreds or even thousands of small sensor

nodes. Thus, the hardware of a sensor node must be small in size if possible. The hardware

 Proprietary & Confidential /79
Sensor Network OS

Research Team

6

constraints of a sensor node affect the size of software loaded on it. The kernel size of a

sensor operating system should be small by optimization. The cost of the sensor node is

another optimization factor to be considered in design.

3) Energy efficiency : Sensor operating systems must support for providing information of

how much energy is left in the sensor node. Kernel schedulers and wireless communication

modules need to manage the energy consumption to ensure node´s long life-time even with

less durable energy sources like batteries. Since there may be duplicate sensor nodes in

wireless sensor network environments, we can consider of increasing the energy efficiency by

using such a strategy.

4) Reliable communication : Wireless communication is assumed to be unreliable because

there may be a lot of obstacles for signals to be transferred in the air. If sensor nodes are

moving, the situation even becomes worse. A sensor operating system must have a reliable

protocol for wireless communication.

5) Scalability : Various kinds of applications must be able to be built for a sensor operating

system. In other words, the operating system should be designed considering the scalabilty

and a standard interface among sensor node platforms.

6) Easy Programming : It is desirable that programmers can easily write sensor programs for

sensor applications without the constraint of learning the whole operating system. For this, the

sensor hardware should be abstracted from the user as much as possible in the sensor

operating system, and a monitoring system for debugging must be supported.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

7

2. Nano OS

Nano OS is a small operating system developed in ETRI for sensor network applications.

Currently, it is developed based on ETRI-SSN sensor node platform and features multi-

threading, dynamic module reconfiguration, and low-power management. Comparing with the

berkerly TinyOS, which is based on the event-driven programming model, Nano OS provides

the thread programming model for sensor nodes.

 There are pros and cons of the event-driven and multi-threaded system. The event-driven

system design gives us smaller context switching latency, more efficient memory usage based

on single stack management, but response time and preemptivity are much poorer than that of

the multi-threaded systems. On the other hand, the multi-threaded design enables preemption,

but necessary memory space for the thread’s stack is somewhat larger than that of the event-

driven. However, they have, in theory, “duality” with respect to each other.

Nano OS provides a package of software that handle a variety of issues that may occur when

forming sensor network applications such as hardware abstraction, task management, power

management, RF message handling, routing, sensing, and actuating.

2.1. Architecture

Figure 2. Nano OS architecture

 Figure 2 shows Nano OS architecture. The Nano OS architecture resembles a classical

modular and layered design, and consists of dynamically-loaded modules included in

hardware part, operating system part, and application part, respectively. The hardware part is

composed of MCU (e.g. ATmega128, CC2430, MSP430), RF module that can be CC2420 or

other products for wireless communication, and Sensors/Actuators. The operating system part

has a role as kernel scheduler and network protocol stack for handling RF messages, and it

 Proprietary & Confidential /79
Sensor Network OS

Research Team

8

has device driver modules, called as HAL, for abstracting the hardware part. The abstraction

of hardware is one of basic characteristics in all operating systems. Further, the operating

system part also offers the system APIs for convenient development of WSN applications to

sensor networking programmers. In the end, the application part provides a way of interacting

with the operating system part via system APIs.

2.2. Key Modules

1) HAL (Hardware Abstraction Layer) : HAL has a role as device driver modules for

abstracting the hardware part and made up of several components such as LED, CLOCK,

POWER, RFM (RF Module), UART, and ADC (Analog to Digital Converter).

2) Kernel : The kernel consists of thread management, memory management and power

management. The thread management part initiates a task scheduler to perform context

switching to handle thread operations. A thread executes a piece of code called “task”. Nano

OS has a preemption-RR scheduler as a thread scheduler. The memory management part

handles memory-related operations such as memory allocation or deallocation. The power

management part controls the power modes provided by the CPU and CC2420. It attempts to

minimize the power consumption of the sensor node.

3) Link Layer : The link layer manages one-hop distance wireless communication. This layer

is strongly connected to the network layer. Currently, Nano OS supports the Nano Mac, which

provides all basic MAC functions such as auto-ACK, data retransmission and CCA for

wireless communication. Sooner or later, 802.15.4 MAC will be added in the link layer.

4) Network Layer : The network layer is responsible for sending the data from one sensor

node to another sensor node by multiple hops. If the data was not sent to the destination, the

source node should deal with the situation properly. The basic routing algorithm supported by

Nano OS is referred to as RENO (A Reactive Routing Algorithm for ETRI Nano OS). It

adopts an on-demand reactive routing protocol, managing the routing table. The Zigbee

routing algorithm (the standard routing algorithm for wireless sensor networks) will be also

included in Nano OS in the future.

There are several modules in Nano OS. They are LED, UART, Sensor(Gas, Light,

Temperature, PIR, Ultra Sonic, Humidity, Battery), Actuator, Power Manager, Heap, Multi-

Threaded Kernel, Semaphore, Message Queue, MAC (Nano MAC) and Routing(RENO

Routing). Separating modules enables to reconfigure Nano OS applications. The

dependencies among modules are shown in the figure.

- nos/kernel/mm : memory management files

 Proprietary & Confidential /79
Sensor Network OS

Research Team

9

Figure 3. Module Dependency

Source codes such as kernel and device drivers are located in nos directory. To enhance

portability, hardware dependent codes are separately located in nos/arch and nos/driver

directory. The platform dependent codes are in nos/platform directory. The kernel directory,

/nos/kernel, has only hardware independent codes. We assure that this approach will make

Nano OS more portable. The directory tree of Nano OS is organized as follows.

.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

10

nos

|- include

|- kernel

| +-thread

|- net

| |- mac

| +- routing

|- arch

| |- atmega128

| +- mm

| |- msp430

| +-mm

|- drivers

| +- rf

+- platform

 |- etri-ssn

 |- nano-24

 |- micaz

 |- zigbex

 |- isn-400n

 |- ubimote

 |- sky-z200

 |- tmote-sky

 |- ubicoin

 +- hmote2420

- nos/include : common header files and user-API related header files

- nos/kernel : kernel codes

- nos/kernel/thread : kernel thread implementations

- nos/net : network related codes

- nos/net/mac : MAC layer protocol implementation

- nos/ net/routing : network layer protocol implementation

- nos/arch : MCU dependent codes. It has subdirectories of MCUs.

- nos/arch/$(MCU) : MCU specific codes

- nos/arch/$(MCU)/mm : memory management files

- nos/drivers : platform independent codes in device drivers

- nos/drivers/rf : device drivers for RF chip products

 Proprietary & Confidential /79
Sensor Network OS

Research Team

11

- nos/platform : platform-specific implementation

- nos/platform/$(PLATFORM) : platform specific codes

2.3. Functionalities

Nano OS supports a variety of development environments for easy programming and

debugging. Please refer to the web page, http://www.qplus.or.kr, for more information. The

following characteristics are provided in Nano OS.

1) Supports a development tool for Nano OS, called “Nano Esto”

2) Supports code optimization (minimization) by Nano OS configuration function

3) Supports writing a sensor application rapidly by “Rapid Prototype” function

4) Supports testing programs to demonstrate each Nano OS module and provide examples.

5) Supports easy-to-code style in programming with C, thread-based C coding. (You don’t

have to learn another program language)

Do you have any plans to build a nice sensor network application?

Then, Nano OS is the answer for the first step!

 Proprietary & Confidential /79
Sensor Network OS

Research Team

12

3. Nano OS Details

3.1. Kernel

3.1.1. OS initialization

All applications must call nos_init() to initialize Nano OS. The nos_init() function includes

all functions necessary for initialization in a module.

void nos_init(void);

Parameters

 None

Return Values

 None

Description

 Initialize all necessary modules if they are selected.

3.1.2. Memory Management

The memory management algorithm is an algorithm derived from avr-libc 1.4. In Nano OS,

this algorithm is referred to as “standard heap library”, shortly “stdlib”. The heap structure in

stdlib consists of a list of free blocks. At frist, when a memory allocation is requested, it

attempts to find a block of the same size. If this attempt fails, it continues to search for a block

of the nearest size, instead. If it still fails, it extends the heap size and allocates a memory

segment to it. When a memory segment is deallocated, the stdlib algorithm merges the

deallocated block into the adjacent block, forming a large block.

… … … …

heap start heap end

Memory Cell

heap extension

Free Block

Header

Next Block Link

Next Block Link

Next Block Link

NULL

Figure 4. Heap memory architecture

The fragmentation problem is addressed by employing the linear heap architecture. The

heap stdlib has a ‘list’ made of free blocks.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

13

Figure 5. Free block list

The actual code of the free block structure is

struct __freelist {

 UINT16 sz;

 struct __freelist *nx;

};

(1) heap initialization

 void NOS_HEAP_INIT(void);

Parameters

 No Parameter

Return Values

The size of heap created

Description

 Initialize the heap memory

(2) heap memory allocation

The stdlib_malloc() function compares the requested memory size with the minimum size

that can be allocated, and then changes the requested memory size. At the first search, it scans

through the free blocks of the same size and saves the nearest of them. If multiple free blocks

of the same size are found, it returns the corresponding block after removing the blocks from

free blocks.

 If the first search fails, the second search proceeds with the most adjacent blocks. After

sorting the requested blocks, it attempts to find a matched block in the search. If a block of the

sorted size matches with a free block, it returns the corresponding block, not a free block. If

the searched block is larger in size, the block is divided into an allocated part and the other

part of the the block. Keeping the other part, it returns the pointer of the matched block.

 If no matching block has been found at the end of the second search, it extends the heap size

and allocates the memory of the requested size, and returns the pointer of the allocated one.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

14

void *nos_malloc(UINT16 len);

Parameters

 len : memory size to be allocated

Return Values

If successful, returns a memory pointer for the allocated memory.

If failed, returns NULL.

Description

 Allocate a memory segment with the length len

(3) heap memory deallocation

To deallocate the heap memory segment, it is necessary to connect the returned block to free

block list of the heap. When it is connected, if they are adjacent, then it merges into a large

free block.

void nos_free(void *p);

Parameters

 p : return address of the allocated memory

Return Values

No value

Description

 Deallocate the memory pointed by p.

3.1.3. Thread Management

In Nano OS, the kernel scheduler uses a round-robin algorithm with a priority queue. The

priorities are categorized into 6 levels (0-5), given as follows.

Level Macro Description

5 PRIORITY_ULTRA The highest priority level, reserved by the system

4 PRIORITY_HIGHEST The user application level thread.

Schedulable with one of 4 levels according to

application characteristics.

3 PRIORITY_HIGH

2 PRIORITY_NORMAL

1 PRIORITY_LOW

0 PRIORITY_LOWEST The lowest priority level, reserved by the system as an

idle thread.

Nano OS manages thread queues with a 16-bit variable. Since a thread can be represented

 Proprietary & Confidential /79
Sensor Network OS

Research Team

15

with 3 bits, maximally, 5 threads (3x15=15bits) can be supported by a 16-bit variable. The

following figure shows a thread queue with 5 threads (3, 4, 2, 1, 5) that are inserted. The

queue is 16-bit variable and each thread is indexed with the 8-bit idx variable. Unlike the

thread queue, attributes of each thread are recorded in 8-bit variable.

 The idle thread can have a task list. If the program registers a task in the task list, the task is

executed when the idle thread is resumed. Since the work is registered as a function, there is

no overhead of creating and managing stacks. It can be used for checking system or batch

processing.

(1) Scheduler initialization

The nos_sched_init() function initializes the scheduling related variables and TCB (thread

control blocks) data structure, and allocates memory blocks to them. It initializes the work

queue and calls the nos_sched_hal_init() function for scheduling.

void nos_sched_init();

Parameters

 No Parameter

Return Values

No value

Description

 Initialize the scheduler

(2) Timer initialization

The nos_sched_hal_init() initializes the hardware timer and its ISR (interrupt service

routine). This function sets timer-related registers so that hardware timer interrupt can occur at

every 5, 10 or 32 ms.

The timer service routine decreases the tick count of a waiting thread at every timer interrupt.

Figure 6. Thread Queue

 Proprietary & Confidential /79
Sensor Network OS

Research Team

16

If the tick count of a thread is equal to 0, the thread is awaken and inserted into the ready

queue to be READY_STATE.

void nos_sched_hal_init();

Parameters

 No Parameter

Return Values

No value

Description

 Initialize the timer for the scheduler

Hardware timer for scheduler ISR

Parameters

 No Parameter

Return Values

No value

Description

 Service routine for the scheduler timer

(3) Thread context switching

The context switching function saves all registers of a currently running thread and inserts

the thread into the ready queue with the corresponding priority. Then, it searches a highest

priority thread and deletes it from the ready queue. If the resultant ready queue is empty, the

ready priority queue flag is cleared indicating that there is no thread in the ready queue. After

selected thread gets to be in RUNNING_STATE, the stack pointer points to the selected

thread and all register values for the selected thread are restored to resume the thread.

void nos_ctx_sw();

Parameters

 No Parameter

Return Values

No value

Description

 Perform a context switch to a highest priority thread in the ready queue

(4) Thread scheduling

The scheduler is initiated by the nos_sched_start() function. It is called by the main()

 Proprietary & Confidential /79
Sensor Network OS

Research Team

17

function, and then it becomes an idle thread with the lowest priority. It sets the timer 0 and

calls the thread switching function to perform a first context switch. Thereafter, it performs a

context switch if there is a thread in the ready queue. If there is no thread in the ready queue,

it will make MCU sleep by invoking the Sleep() function as an idle thread.

void nos_sched_start();

Parameters

 No Parameter

Return Values

No value

Description

 Begin to schedule user threads

(5) Thread APIs

Nano OS thread APIs will obey rules recommeded by POSIX. We support various thread

related APIs such as the thread creation and destruction, synchronization, suspending and

resuming, etc.

TCB (thread control block) contains the control information for a thread.

Figure 7. TCB structure

The thread function saves the locations at which thread and arguments will resume. The

‘Thread ID’ is a unique id of the thread and the ‘State’ is the state of the thread. The ‘Stack

Ptr’ saves the current stack pointer, and ‘Stack Start Addr’ is used for checking the stack

 Proprietary & Confidential /79
Sensor Network OS

Research Team

18

overflow. The ‘Sleep Tick’ is set when the thread_sleep() function is called, and the ‘Priority’

stores the priority level of the thread. The ‘Wait Queue’ has a list of waitng threads. The

number of TCB blocks are controlled by the macro MAX_NUM_TOTAL_THREAD. The

actual TCB structure is shown here:

typedef struct tcb

{

 void (*func)(void *);

 void *args_data;

 STACK_PTR sptr;

 UINT8 id;

 UINT8 state;

 STACK_PTR stack_start_addr;

 UINT16 sleep_tick;

 UINT8 priority;

 THREAD_QUEUE wait_q;

} *TCB;

 The thread state is set as one of the five states.

READY_STATE : the ready state for execution

RUNNING_STATE : the currently running program

WAITING_STATE : the waiting state for an event

SLEEPING_STATE : the sleeping state

EXIT_STATE : the exit state to be terminated

Figure 8. Thread state transition diagram

 Proprietary & Confidential /79
Sensor Network OS

Research Team

19

When a thread related function is called, one of the following values are returned.

- THREAD_NO_ERROR : success

- THREAD_ID_DUPLICATE_ERROR : the thread id already exists.

- THREAD_PRIORITY_OUT_OF_RANGE_ERROR : the priority set is out of the

allowed range.

- THREAD_PRIORITY_CHANGE_ERROR : the system cannot change its priority.

- THREAD_RESUME_ERROR : the system cannot resume the thread.

1) Thread creation

The thread_create() checks if the tid value is valid. If valid, it creates and sets up a TCB

block for that thread. Then it inserts the thread into a ready queue, which is related to the

priority of the thread.

UINT8 nos_thread_create(void (*func)(void *args), void *args_data, UINT16

stack_size, UINT8 priority);

Parameters

 tid : unique thread ID

 func : entry point of thread

 args_data : a pointer of arguments

 stack_size : thread stack size

 priority : thread priority

Return Values

created thread id

Description

 Create a thread with tid whose priority is priority, whose stack size is stack_size, that

will execute the function func(args).

2) Thread destruction

The thread_exit() function wakes up all waiting threads for this thread and inserts them

into the ready queue. All memory segments for the thread (e.g. stack, TCB) are deallocated

and the state is changed to be EXIT_STATE. In the end, it performs a context switch to

resume one of the other threads in the ready queue.

void nos_thread_exit();

Parameters

 Proprietary & Confidential /79
Sensor Network OS

Research Team

20

 No parameter

Return Values

No Value

Description

Destroy the currently running thread

3) Thread joining (for synchronization)

The thread_join() function checks if a target thread is created. If it is, thread_join inserts the

thread id into the waiting queue of the target thread, and then changes its state to

WAIT_STATE. At the last stage, it performs a context switching for other threads to be

executed.

void nos_thread_join(UINT8 tid);

Parameters

 tid : thread ID to be joined

Return Values

No Value

Description

 Wait until the thread tid terminates

4) Changing thread priority

The thread_priority_change () function takes the thread id and the priority as parameters to

perform the change. After checking validation of the change, it attempts to change the target

thread’s priority. If the thread state is in READY_STATE, the target thread is deleted from

the ready queue with the previous priority and inserted into the ready queue with the new

priority.

UINT8 nos_thread_priority_change(UINT8 tid, UINT8 new_priority);

Parameters

 tid : target thread ID for priority change

 new_priority : priority level to be changed

Return Values

THREAD_NO_ERROR : success

THREAD_PRIORITY_CHANGE_ERROR : fail

Description

 Change the priority of the thread tid to the new_priority

 Proprietary & Confidential /79
Sensor Network OS

Research Team

21

5) Suspending and Resuming the thread

The thread_suspend() function can suspend the thread itself or the other thread. In case of

suspending itself, it sets the suspend flag and becomes in READY_STATE. Then, it performs

a context switching function to schedule the other threads. In case of suspending the other

thread, it also sets the suspend flag. If the state of the other thread is in READY_STATE, it

deletes the thread from the ready queue. If there are not any threads in ready queue, it unsets

the ready queue flag.

The thread_resume() function resumes the given thread (it means that the thread is inserted

into the ready queue for execution) that was suspended. Since the thread cannot resume itself,

it must be checked before doing any further tasks. The function unsets the suspend flag, and if

the thread state is READY_STATE, then the thread is inserted into the ready queue with the

corresponding priority.

void nos_thread_suspend(UINT8 tid);

Parameters

 tid : thread ID to be suspended

Return Values

No value

Description

 Suspend the thread tid

UINT8 nos_thread_resume(UINT8 tid);

Parameters

 tid : target thread ID

Return Values

THREAD_RESUME_ERROR : fail

THREAD_NO_ERROR : success

Description

 Resume the thread tid

6) Dealying thread

 To delay a thread for given time, use the thread_sleep(UINT16 ticks) function. This function

delays the execution of the thread for ticks time.

void nos_thread_sleep(UINT16 ticks);

Parameters

 ms : the delay time in tick, where a tick is scheduling time unit in milli-second

Return Values

 Proprietary & Confidential /79
Sensor Network OS

Research Team

22

No value

Description

 Delay the thread for ticks time. Note that the resolution of the delay time is the context

switching period (e.g. 50ms, or 250 ms).

The ticks depends on the context switching time of the the kernel. So we provide the

following functions for the input of time. They are redefined with the nos_thread_sleep(…)

function.

#define nos_thread_sleep_ms(ms)

Parameters

 ms : time in milli-secon

#define nos_thread_sleep_sec(sec)

Parameters

 sec : time in second

7) Waking up thread

 To wake up a thread in asleep, use the thread_wakeup(UINT8 tid) function.

UINT8 nos_thread_wakeup(UINT8 tid);

Parameters

 tid : target thread ID

Return Values

THREAD_WAKEUP_ERROR : fail

THREAD_NO_ERROR : success

Description

 Wake up the target thread with tid if it is in asleep.

3.1.4. Inter-Thread Communication (ITC)

In multi-threaded operating system, threads sometimes need to communicate among each

other. In this section, two kernel objects, the message queue and the semaphore, that are used

for inter-thread communications in Nano OS, were introduced. These objects are important in

thread programming because they are used for handling the thread synchronization.

3.1.4.1. Message Queue

The message queue is a kernel object that enables to send or receive data among threads.

The message queue should be created before use. If it is no longer used, it must be deleted.

Message queues work in a FIFO principle (First In, First Out).

 Proprietary & Confidential /79
Sensor Network OS

Research Team

23

ThreadThreadThreadThread
AAAA

ThreadThreadThreadThread
BBBB

Message QueueMessage QueueMessage QueueMessage Queue

Create
Destroy

send

recv

Message Message Message Message

Figure 9. Message queue

In Nano OS, threads can continue to perform their execution even after a thread sends a

message to the message queue, regardless of the message transmitted to the receiver thread

(non-blocking send). If there is no message to read from the message queue, the receiver

thread is blocked until there is a new message in the queue (blocking receive). Different types

of message queues can be created according to the message type. Nano OS supports both the

non-blocking and blocking communication through the message queue.

The message queue is handled as the Fig. 10.

MSGQMSGQMSGQMSGQ

type

wait_Q ThreadThreadThreadThread ThreadThreadThreadThread ThreadThreadThreadThread

len

msg

idx

Figure 10. Message queue structure

The message queue has the following 4 types.

MSGQ_UCHAR : unsigned character

 MSGQ_CHAR : character

MSGQ_UINT : unsigned integer

MSGQ_INT : integer

 The actual code of the message queue looks like this.

typedef struct msgq

 Proprietary & Confidential /79
Sensor Network OS

Research Team

24

 {

 UINT8 idx; // queue index

 void *msg; // message array

 UINT8 len; // queue size

 UINT8 type; // message type in the queue

 THREAD_QUEUE wait_Q; // waiting thread queue

 } *MSGQ;

(1) Message queue creation

The msgq_create() function allocates the message queue structure and configures the

queue structure for the message types and the length of the queue properly. It returns the

queue structure if succeeded.

 MSGQ msgq_create(UINT8 type, UINT8 len);

Parameters

 type : data type of a message to be stored

 len : size of the message queue

Return Values

The structure of the message queue created

Description

 Create a message queue with the message type type and the length len

(2) Message queue deletion

The msgq_destroy() function deallocates the message queue structure and exits the function.

void msgq_destroy(MSGQ mq);

Parameters

 mq : message queue to be destroyed

Return Values

None

Description

Destroy the message queue mq

(3) Sending message (blocking send)

 To send a message to another thread, the message has to be saved into the message queue

using the msgq_send() function. The function checks if there is room left for the message. If

there is no room, it returns MSGQ_FULL_ERROR. Then, if it gets a wrong type, it returns

 Proprietary & Confidential /79
Sensor Network OS

Research Team

25

MSGQ_TYPE_MAT_ERROR. Otherwise, it performs typecasting for the message and inserts

it into the message queue.

UINT8 msgq_send(MSGQ mq, void *data);

Parameters

 mq : message queue to which a message will be sent

 data : pointer of data to be sent

Return Values

Returns the result of sending

MSGQ_NO_ERROR : success

MSGQ_FULL_ERROR : the message queue is full

MSGQ_TYPE_MATCH_ERROR : the types do not match

Description

 Send a message pointed by data to the message queue mq

 (4) Receiving message (blocking receive)

To receive a message from the message queue, the msgq_recv() function is used. It checks if

there is a message in the message queue, and if any, then it typecasts the message for the data

and returns MSGQ_NO_ERROR. Otherwise, the thread is on the waiting list and immediately

performs a context switching.

UINT8 msgq_recv(MSGQ mq, void *data);

Parameters

 mq : The message queue at which a message will be arrived

 data : The pointer of data to be received

Return Values

Return the result of receiving

MSGQ_NO_ERROR : Success

MSGQ_TYPE_MATCH_ERROR : Message types do not match

Description

 Receive a message, that will be stored at the pointer data, from the message queue mq

(5) Sending message (non-blocking send)

In non-blocking send, program control returns immediately after sending data to the message

queue. So, it does not guarantee the delivery of the message to the message queue because it

returns program control even if it didn’t send the message now. The rest is the same as the

operation of the blocking send in the message queue. To wait for the message sent to deliver

 Proprietary & Confidential /79
Sensor Network OS

Research Team

26

to the message queue completely, use the nos_msgq_wait_until_isend_complete(mq) function.

UINT8 msgq_isend(MSGQ mq, void *data);

Parameters

 mq : message queue to which a message will be sent

 data : pointer of data to be sent

Return Values

Returns the result of sending

MSGQ_NO_ERROR : success

MSGQ_FULL_ERROR : the message queue is full

MSGQ_TYPE_MATCH_ERROR : the types do not match

Description

 Send a message pointed by data to the message queue mq in non-blocking mode

 (6) Receiving message (non-blocking receive)

In non-blocking receive, program control returns immediately after receiving data to the

message queue. So, it does not guarantee the delivery of the message from the message queue

because it returns program control even if it didn’t receive the message now. The rest is the

same as the operation of the blocking receive in the message queue. To wait for the message

to be delivered from the message queue completely, use the

nos_msgq_wait_until_irecv_complete(mq) function.

UINT8 msgq_irecv(MSGQ mq, void *data);

Parameters

 mq : The message queue at which a message will be arrived

 data : The pointer of data to be received

Return Values

Return the result of receiving

MSGQ_NO_ERROR : Success

MSGQ_TYPE_MATCH_ERROR : Message types do not match

Description

 Receive a message in non-blocking mode, that will be stored at the pointer data, from

the message queue mq

 Proprietary & Confidential /79
Sensor Network OS

Research Team

27

3.1.4.2. Semaphore

The semaphore is used for synchronization among threads in multi-threaded environments.

Semaphore should be created and configured before use. Whenever the thread calls the wait()

function, the semaphore value decreases. The wait() function obtains the semaphore as long as

the semaphore value is greater than 0. If the semaphore value is equal to 0, the thread calling

the wait() function changes into waiting state. Threads that do not have to use the semaphore

call signal() function to return their semaphores. In this case, the semaphore values will

increase, and the other threads that require the semaphores will get an opportunity of

obtaining them. The semaphore that is no longer used shall be deallocated.

ThreadThreadThreadThread
AAAA

ThreadThreadThreadThread
BBBB

SemaphoreSemaphoreSemaphoreSemaphore

Create
Free

signal
wait

Figure 11. Semaphore

Information of a semaphore is addressed in the semaphore structure shown below. All

semaphores have an internal semaphore value. According to the value, the threads that require

the semaphore can either acquire the semaphore or become in waiting state. A waiting queue

in a semaphore structure has a list of threads that want to acquire the semaphore.

SEMAPHORESEMAPHORESEMAPHORESEMAPHORE

Value

Waiting Queue ThreadThreadThreadThread ThreadThreadThreadThread ThreadThreadThreadThread

Figure 12. Semaphore structure

The actual code of semaphore structure looks like this.

typedef struct semaphore

{

 UINT8 val; // Semaphore value

 THREAD_QUEUE wait_q; // Wait queue

} *SEMAPHORE

 Proprietary & Confidential /79
Sensor Network OS

Research Team

28

(1) Semaphore creation

The semaphore_create() gets the semaphore value as a parameter, which is the maximum

value that the semaphore can have. That is, this value directly indicates the number of threads

that can acquire the semaphore at the same time. If succeeded, it returns the pointer of

semaphore structure.

SEMAPHORE semaphore_create(UINT8 value);

Parameters

 value : the maximum value of the semaphore

Return Values

pointer of the semaphore structure created

Description

 Creates a semaphore with the semaphore value value

(2) Semaphore destruction

A semaphore that is no longer used must be deallocated.

void semaphore_free(SEMAPHORE sem);

Parameters

 sem : semaphore structure to be deallocated

Return Values

None

Description

Deallocate the semaphore sem

(3) Semaphore acquisition

The semaphore_wait() function is used for a thread to acquire a semaphore.

void semaphore_wait(SEMAPHORE sem);

Parameters

 sem : semaphore structure to acquire

Return Values

None.

Description

Acquire the semaphore sem

 Proprietary & Confidential /79
Sensor Network OS

Research Team

29

(4) Semaphore release

 The semaphore_signal() function release the semaphore so that other threads can acquire it.

void semaphore_signal(SEMAPHORE sem);

Parameters

 sem : semaphore structure to release

Return Values

None.

Description

Release the semaphore sem

 Proprietary & Confidential /79
Sensor Network OS

Research Team

30

3.1.5. Power Management

Nano OS controls sleep modes of MCU to reduce the energy comsumption.

 Sleep modes are defined as macros shown below.

_IDLE : Set the MCU idle state

_PWR_SAVE : Set the MCU power save state

_EXT_STANDBY : Set the MCU external standby state

(1) Setting MCU sleep mode

 Before calling NOS_SLEEP_MCU() to go into sleep state, the

NOS_SET_SLEEP_MODE() function must be called to select the sleep mode of MCU.

#define NOS_SET_SLEEP_MODE(sleep_mode)

Parameters

sleep_mode : Sets the power mode before calling hal_sleep_mcu() function

(2) Enabling or disabling MCU sleep function

 In case of ATmega128 MCU, the sleep bit of the sleep register should be active before

setting the sleep mode. Nano OS provides the functions to enable/disable the MCU sleep

function.

#define NOS_SLEEP_ENABLE()

Parameters

 None.

#define NOS_SLEEP_DISABLE()

Parameters

 None.

(3) MCU sleep

 The MCU goes into the selected mode designated by the NOS_SET_SLEEP_MODE()

function. The NOS_SLEEP_MCU() function should be called after

NOS_SLEEP_ENABLE() function and before NOS_SLEEP_DISABLE() function.

#define NOS_SLEEP_MCU()

Parameters

 Proprietary & Confidential /79
Sensor Network OS

Research Team

31

 None.

3.1.6. Kernel Timer

 Nano OS supports kernel timer functions. The software implemented timers can invoke a

function whenever the timers are expired. Nano OS supports up to 8 timers (timer id is from 0

to 7)

(1) Timer creation

 A timer is created with the nos_timer_create(…) function.

UINT8 nos_timer_create(void (*func)(void), UINT16 ticks, UINT8 opt);

Parameters

 tmid : pointer of timer id (one within from 0 to7)

 func : function to be executed when a timer is expired

ticks : ticks until expiration

 opt : timer option. If opt is TIMER_ONE_SHOT, this timer executes the function only

once. If opt is TIMER_PERIODIC, this timer executes the function whenever timer is

expired.

Return Values

TIMER_DUPLICATE_ERROR : fail. The timer id is duplicated.

created timer ID : success

Description

 Creates a timer with tmid

The ticks depends on the context switching time of the the kernel. So we provide the

following functions for the input of time. They are redefined with the nos_timer_create(…)

function.

#define nos_timer_create_ms(tmid, func, ms, opt)

Parameters

tmid : pointer of timer id (one within from 0 to7)

func : function to be executed when a timer is expired

ms : time in milli-second

opt : timer option. If opt is TIMER_ONE_SHOT, this timer executes the function only

once. If opt is TIMER_PERIODIC, this timer executes the function whenever timer is

expired.

#define nos_timer_create_sec(tmid, func, sec, opt)

 Proprietary & Confidential /79
Sensor Network OS

Research Team

32

Parameters

tmid : pointer of timer id (one within from 0 to7)

func : function to be executed when a timer is expired

sec : time in second

opt : timer option. If opt is TIMER_ONE_SHOT, this timer executes the function only

once. If opt is TIMER_PERIODIC, this timer executes the function whenever timer is

expired.

#define nos_timer_create_min(tmid, func, min, opt)

Parameters

 tmid : pointer of timer id (one within from 0 to7)

func : function to be executed when a timer is expired

min : time in minute

opt : timer option. If opt is TIMER_ONE_SHOT, this timer executes the function only

once. If opt is TIMER_PERIODIC, this timer executes the function whenever timer is

expired.

(2) Timer destruction

A timer is destroyed with the nos_timer_destroy(…) function.

void nos_timer_destroy(UINT8 tmid);

Parameters

 tmid : timer id (one within from 0 to7)

Return Values

None.

Description

 Destroy the timer with tmid

(3) Timer activation

A timer begins to work after being activated. For activation, the nos_timer_activate(…)

function is used.

UINT8 nos_timer_activate(UINT8 tmid);

Parameters

 tmid : timer id (one within from 0 to7)

Return Values

TIMER_ACTIVATE_ERROR : fail.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

33

TIMER_NO_ERROR : success

Description

 Activate the timer with tmid

(4) Timer deactivation

The nos_timer_deactivate(…) function deactivates the activated timer.

UINT8 nos_timer_deactivate(UINT8 tmid);

Parameters

 tmid : timer id (one within from 0 to7)

Return Values

TIMER_DEACTIVATE_ERROR : fail.

TIMER_NO_ERROR : success

Description

 Deactivate the timer with tmid

 Proprietary & Confidential /79
Sensor Network OS

Research Team

34

3.2. Network

3.2.1. MAC

3.2.1.1. Nano MAC

(1) Data structures

The Nano MAC has the following structure.

Source
ID

Frame
Check

Sequence
MAC layer payload

Destination
Address

Source
Address

Destination
PAN ID

Frame
Control
Field

Data
Sequence
Number

Source
ID

Frame
Check

Sequence
MAC layer payload

Destination
Address

Source
Address

Destination
PAN ID

Frame
Control
Field

Data
Sequence
Number

Figure 13. MAC frame structure

 Frames are managed in the form of NMAC_TX_INFO, NMAC_RX_INFO and

NMAC_RXQ_ENTITY structures.

typedef struct _nmac_tx_info

{

UINT8 payload_length; // length of frame payload

WORD dest_addr; // Destination address

#ifdef ROUTING_M

void *routing_header_ptr; // Network layer header

#endif

void *payload_ptr; // payload

} NMAC_TX_INFO;

typedef struct _nmac_rx_info

{

UINT8 payload_length; // length of frame payload

WORD src_addr; // Source address

void *payload_ptr; // payload

} NMAC_RX_INFO;

typedef struct _nmac_rx_queue

{

UINT8 payload_length; // length of frame payload

WORD src_addr; // Source address

INT8 rssi; //Received Signal Strength Indicator

UINT8 corr; //Correlation value (unsigned 7bit) for LQI

BYTE payload[NMAC_MAX_PAYLOAD_SIZE]; // payload

 Proprietary & Confidential /79
Sensor Network OS

Research Team

35

} NMAC_RXQ_ENTITY;

 When the routing module is not used, the RXQUEUE structure is used to store the received

message in MAC layer. The RXQUEUE is a circular queue, which has the head and tail of

the queue, number of items, and actual data.

Head

Tail

Figure 14. Receiver queue

volatile static struct _nmac_rx_queue

{

UINT8 front, rear, nitem; // front, rear of the queue

NMAC_RXQ_ENTITY data[NMAC_RXQ _LEN]; // queue

} NMAC_RX_QUEUE;

The RF_ENV structure is used to store some pieces of information in MAC layer.

static struct _nmac_env

{

UINT8 tx_seq; // Sequence number

volatile UINT8 rx_seq; // Sequence number

WORD panid; // PAN ID

WORD address; // Node address

BOOL rx_on_state; // store RF recv state that user specified

#ifdef DEMO_M

 UIN16 min_permit_addr;

UIN16 max_permit_addr;

 Proprietary & Confidential /79
Sensor Network OS

Research Team

36

#endif

} NMAC_ENV;

(2) Module initialization

 In order to use the RF for communication, the nmac_init() function must be called. This

function performs initializations of RF chip, rf_env and rx_queue, and then sets PAN ID and

address of the node. Besides, it registers a handler to process the receiving data when

interrupted and activates the interrupts.

void nmac_init(void)

Parameters

 UINT8 channel, UINT16 panid, UINT16 myaddr

Return Values

 None

(3) Sending packet

 The nmac_tx() function is used to send packets through MAC layer from application or

network layer. When this function is called, it is followed by the procedures.

BOOL nmac_tx(NMAC_TX_INFO* nmac_tx_info_ptr)

Parameters

 nmac_tx_info_ptr : data information to send

Return Values

TRUE : success to send

FALSE : no ACK received (fail)

1. If ack is requested, it turns on the receiver.

2. Empty the TXFIFO and then write new data into TXFIFO

3. Transmit a frame by CSMA-CA algorithm

4. If Ack is missing, attempts TX up to 3 times.

5. If the RF was being turned off, it turns off RF again and returns the result for sending.

(4) Receiving packet

The nmac_rx() function reads a frame from the MAC RX queue and returns TRUE if the

MAC RX queue is not emtpy or returns FALSE if the MAC RX queue is empty.

void nmac_rx(NMAC_RX_INFO* nmac_rx_info_ptr);

 Proprietary & Confidential /79
Sensor Network OS

Research Team

37

Parameters

 nmac_rx_info_ptr : pointer of receiver information buffer

Return Values

 True if there is a packet received, which is in the queue

False if there is no packet in the queue

The nmac_rx_handler() is called from ISR and handles the received frame from RF chip. It

is registered as a call back function of ISR when the RF module is initialized. This function

handles the Ack frame and normal data frame. If an Ack has been arrived, it sets the

RF_ENV.tx_ack_received. It means the TX frame has been transmitted successfully. If it is a

normal data frame, it queues the whole frame in the MAC RX queue and call a callback

function for MAC_RX interrupt.

void nmac_rx_handler()

Parameters

 None.

Return Values

 None

 (5) Receiver module On/Off

 To save power, it is possible to turn off the RF chip. The nmac_rx_on() function activates the

receiver of RF chip while the nmac_rx_off() function deactivates the receiver of RF chip.

void nmac_rx_on(void);

Parameters

 None

Return Values

 None

void nmac_rx_off(void);

Parameters

 None

Return Values

 None

(6) Testing (limit RX range)

Nano OS provides a few functions for testing. In the development phase, all sensor nodes

are placed within one hop range, in which all nodes are able to communicate among each

 Proprietary & Confidential /79
Sensor Network OS

Research Team

38

other directly. In such an environment, it is difficult to make sure multi hop routing function is

performed properly. Thus, this problem can be handled by limiting the communication range.

void nmac_set_rx_range(UINT16 min_addr, UINT16 max_addr);

Parameters

min_addr : minimum node address that allows to receive (for testing)

 max_addr : maximum node address that allows to receive (for testing)

ReturnValues

 None

When a frame has been received, the following function checks the range validation.

static BOOL nmac_rx_permit(UINT16 src_addr);

Parameters

 src_addr : previous hop node address

ReturnValues

 TRUE if a given node address is within allowable range, and FALSE otherwise

 Proprietary & Confidential /79
Sensor Network OS

Research Team

39

3.2.2. Routing

3.2.2.1. RENO Routing

 (1) Data structure

The RENO protocol is a reactive and on-demand routing algorithm. The packet structure of

this protocol is shown in Fig. 15.

Source
ID

Payload
Length

Network layer payloadreserved
Destination

ID
Message

Hop count
Message

type
Message
Hop limit

Figure 15. Routing Message Structure

typedef struct reno_packet

{

UINT8 msg_type; // message type

UINT8 msg_hop_limit; // maximum number of hops that a message can be

delivered

UINT8 msg_hop_count; // number of hops that a message passes through

UINT8 reserved; // reserved.

UINT8 dest_id; // destination ID

UINT8 src_id; // source ID

UINT8 payload_size; // length of palyload

void *payload_ptr; // pointer of payload

} RENO_PACKET;

The msg_type variable describes the type of a message. There are four types in a message;

DATA, RREQ(Route Request), RREP(Route Reply) and RERR(Route Error). The DATA

message contains real data in application layer. In order to send the DATA message, a routing

path to the destination needs to be determined in RENO algorithm. The RREQ message is the

one that sets up a routing path in ad-hoc networks. If the RREQ message is broadcast, the

neighbor nodes get the message and rebroadcast it. When the destination node receives the

RREQ message, it notifies this fact to the sender node by sending a RREP message. Any node

in routing path can send RERR to a source node when DATA message trasmission has been

failed.

When a DATA message itself has arrived, the node stores the message in the RENO RX

queue. The source ID, data length, and data are stored in the following circular queue.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

40

Front

Rear

Source id
Data

length
Data

Figure 16. Data Queue on Receiver Side

typedef struct reno_recv_data

{

UINT8 src_id;

UINT8 data_length;

UINT8 data[RENO_MAX_PACKET_PAYLOAD_SIZE];

}RENO_RECV_DATA;

struct reno_queue

{

UINT8 front, rear;

RENO_RECV_DATA item[RENO_QUEUE_LENGTH];

} RENO_QUEUE;

 MAC frame is handled in Session Information base(SIB) structure.

typedef struct reno_session_information_base

{

UINT8 prev_hop_id; // previous node ID that send the packet

UINT8 next_hop_id; // next node ID to receive the packet

RENO_PACKET packet; // routing packet

} RENO_SIB;

 Proprietary & Confidential /79
Sensor Network OS

Research Team

41

 Each node takes the responsibility for relaying packets of each neighbor nodes properly.

Nodes have the following routing table for doing this.

typedef struct reno_route_entry

{

UINT8 dest_id; // destination node ID

UINT16 dest_seq_num; // to manage the last received data

UINT8 next_hop_id; // next hop node ID to send data to

BOOL is_valid; // the entry is valid?

UINT8 link_fail_count; // for RERR

} RENO_ROUTE_ENTRY;

 Information at network layer (e.g. routing table, node ID and sequence number) is stored in

Network Information Base (NIB) structure. The NIB structure is shown below. Each node has

only one NIB.

struct reno_network_informaion_base

{

UINT8 id; // node ID

UINT16 seq_num; // routing infomation message sequence number

// routing table

RENO_ROUTE_ENTRY route_table[MAX_ROUTE_ENTRY]; // routing table

UINT8 route_table_index; // index of last added entry

// received data; not used

UINT8 recv_data[RENO_MAX_PACKET_PAYLOAD_SIZE];

UINT8 recv_data_length;

} RENO_NIB;

(2) Module initialization

 To use routing module, the reno_init() function must be called. This function calls the

nos_rf_init() function to initialize MAC layer, and initializes NIB, the receiver queue and so

on.

void reno_init(void);

Parameters

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

42

ReturnValues

 None

(3) Receiving packet

 To receive data from the network layer, the application layer must call the

reno_recv_from_nwk() function. It should specify the source node ID and a buffer pointer for

received data as parameters.

BOOL reno_recv_from_nwk(UINT8* src_id, UINT8* data_length, void* data);

Parameters

 src_id : source node ID

 data_length : data size

 data : pointer of data

ReturnValues

TRUE if succeeded, FALSE if failed

(4) Sending packet

 To send data to the network layer, the application layer must call the reno_send_to_nwk()

function. It fills the Session Information Base structure and calls the reno_handler() function.

void reno_send_to_nwk(UINT8 dest_id, UINT8 data_length, void *data);

Parameters

 dest_id : destination node ID

 data_length : data size

 data : pointer of data

ReturnValues

 None

(5) Receiving packet from MAC layer

The reno_recv_from_mac() function is used for relaying data from MAC layer to network

layer. It writes a frame into Session Information Base structure and calls reno_hanler()

function.

void reno_recv_from_mac(void);

Parameters

 None

ReturnValues

 Proprietary & Confidential /79
Sensor Network OS

Research Team

43

 None

(6) Packet sending to MAC layer

The reno_send_to_mac() function relays data from network layer to MAC layer. It increases

the hop counter by 1, and then unicasts or broadcasts depending on whether broadcasting is

needed(RREQ).

BOOL reno_send_to_mac(RENO_SIB *sib_ptr, BOOL is_broadcast);

Parameters

 sib_ptr : Session Information Base to send

 is_broadcast : broadcasting or not?

ReturnValues

 TRUE if succeeded, FALSE if failed

(7) Packet handling

When packets are received or supposed to be sent, the reno_handler() function is called.

void reno_handler(RENO_SIB *sib_ptr);

Parameters

 sib_ptr : Session Information Base to process

ReturnValues

 None

 The reno_handler() function checks the destination ID. If the destination ID is the node itself,

it stores the received message in the receiver queue, inserts/deletes a routing enrty, or sends

routing information. If the destination ID is not the node itself, it searches the destination ID

through routing table. Depending on the result (success or fail), it calls the corresponding

function. If the destination ID is found during searching through the routing table (in case of

success), the reno_route_lookup_success() is called.

void reno_route_lookup_success(RENO_SIB* sib_ptr);

Parameters

 sib_ptr : Session Information Base to process

ReturnValues

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

44

 1. If the message type is DATA and the source node ID is not the node itself, it sends the

packet to the next hop node (The next hop node is identified by sending a RREQ packet). If

the packet sending is failed, it deletes the corresponding routing entry for the next hop. If the

source node is not the node itself, it also sends a RERR message to previous hop to notify the

source node of the failure of routing. If it even fails to send the RERR, it deletes the routing

entry for the previous hop.

2. If the message type is RREQ, it inserts the entry information into the routing table, and

broadcasts the packets if the result is TRUE.

3. If the message type is RREP, it inserts the entry information to the routing table.

4. If the message type is RERR, it simply removes the entry information from the routing

table.

If the destination ID is not found in the routing search (in case of failure), the

reno_route_lookup_fail() function is called.

void reno_route_lookup_fail(RENO_SIB* sib_ptr);

Parameters

 sib_ptr : Session Information Base to process

ReturnValues

 None

 1. If the message type is DATA, it tries to send data to the next hop by calling the reno_

send_to_mac () function. If it fails, it deletes the routing entry from the routing table for the

next hop and calls the reno_route_lookup_fail() function that is a handler invoked when no

routing entry is found in the routing table.

2. If the message type is RREQ, it inserts the entry information into the routing table, and

broadcasts the packet if the result is TRUE.

3. If the message type is RREP, it inserts the entry information into the routing table and

sends it to the next hop.

4. If the message type is RERR, it simply deletes the entry information from the routing

table and sends it to the next hop.

(8) Creating and sending packets

 The reno_send_rreq(), reno_send_rrep() and reno_send_rerr() functions are used to send

RREQ, RREP, and RERR packets, respectively.

 The reno_send_rreq() function creates and sends an RREQ message. It periodically

broadcasts the RREQ request and looks up the routing table after a given time. It returns if it

 Proprietary & Confidential /79
Sensor Network OS

Research Team

45

obtains the routing information or the number of tries is exceeded.

The reno_send_rrep() function creates and sends an RREP message for an RREQ message,

while the reno_send_rerr() function creates and sends an RERR message. In both cases, after

being writted into the Session Information Base, the message is sent to the requester node by

calling the reno_send_to_mac() function.

UINT8 reno_send_rreq(UINT8 dest_id);

Parameters

 dest_id : destination node ID

ReturnValues

routing table entry number to the destination if succeeded

ROUTE_TABLE_LOOKUP_FAILURE if failed

BOOL reno_send_rrep(UINT8 dest_id);

Parameters

 dest_id : destination ID

ReturnValues

 TRUE if succeeded FALSE if failed

BOOL reno_send_rerr(UINT8 dest_id, UINT8 prev_node_id, UINT8 err_node);

Parameters

 dest_id : destination node ID

 prev_node_id : previous node ID

 err_node : node ID where error occured

ReturnValues

TRUE if succeeded FALSE if failed

(9) Routing table management

 To manage the routing table, the following functions are provided.

 The reno_scan_route_table() function searches such a routing entry that the given node ID is

the destination, and returns the entry number. It searches routing entries from the last entry

inserted into the routing table, and circulates after the first entry. It returns if it finds the

routing entry for the given dest_id or circulates the routing table.

UINT8 reno_scan_route_table(UINT8 dest_id);

Parameters

 Proprietary & Confidential /79
Sensor Network OS

Research Team

46

 dest_id : destination node ID

ReturnValues

routing entry number if dest_id is found in the search

ROUTE_TABLE_LOOKUP_FAILURE if the search is failed

 The reno_insert_route_entry() function adds a new entry to the routing table. If the source

ID is the node itself, it returns FALSE since it comes back to the node. Otherwise, it checks if

the routing path from the source node is already in the routing table. If it is not in the routing

table, it searches an empty routing entry, registers the routing information, and returns TRUE.

If it is in the routing table, it compares the sequence numbers of the routing entries with the

one of the packet. If the sequence numbers are same and the packet is supposed to be sent

from the same node, it is recognized as retransmission. In this case, it does not update the

routing table, but returns TRUE so that the RREQ message can be sent. If the sequence

numbers are same but the packet is supposed to be sent from the different nodes, and further

the sequence number is less than 2, it is regarded as an old packet and thus returns FALSE.

Elsewhere, it updates the corresponding entry information in the routing table.

BOOL reno_insert_route_entry(RENO_SIB* sib_ptr);

Parameters

 sib_ptr : Session Information Base to be inserted in the routing table

ReturnValues

 TRUE if a new entry is added or the previous entry is updated

 FALSE otherwise.

void reno_delete_dest_route_entry(UINT8 dest_id);

Parameters

 dest_id : destination node ID to be deleted in the routing table

ReturnValues

 None

 The reno_delete_dest_route_entry() function deletes the routing entry of which node ID is

the next_hop_id of the entry.

void reno_delete_next_route_entry(UINT8 next_hop_id);

Parameters

 next_hop_id : Next hop ID to be deleted in the routing table

ReturnValues

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

47

(10) Debugging

The print_route_table() function prints routing table information on the UART terminal. The

print_nib(), print_sib() and print_payload() functions print Network Information Base,

Session Information Base and the content of payload on the UART terminal, respectively. All

these simulation and debugging function can be used only when the kernel is set to be in the

debugging mode.

void print_route_table(void);

Parameters

 None

ReturnValues

 None

void print_nib(void);

Parameters

 None

ReturnValues

 None

void print_sib(RENO_SIB *sib_ptr);

Parameters

 sib_ptr : pointer of Session Information Base

ReturnValues

 None

void print_payload(INT8 payload_unit, UINT8 payload_size, void *payload);

Parameters

 payload_unit : payload unit (UINT16 : 16, else decimal: 8, String : s)

 payload_size : payload size

 payload : pointer of payload

ReturnValues

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

48

3.3. Nano Hardware Abstract Layer (nHAL)

The nano Hardware Abstract Layer(nHAL) makes operating systems independent by

abstracting hardware details. It varies from hardware to hardware.

3.3.1. MCU dependent modules

 (1) Critical Section

 For critical sections, Nano OS provides two macros, NOS_ENTER_CRITICAL_

SECTION() and NOS_EXIT_CRITICAL_SECTION().

#define NOS_ENTER_CRITICAL_SECTION()

Parameters

None

The NOS_ENTER_CRITICAL_SECTION() stores SREG (Status Register) into the stack

and turns off all interrupt activities (context switching is disabled).

#define NOS_EXIT_CRITICAL_SECTION()

Parameters

 None

The NOS_EXIT_CRITICAL_SECTION() restores SREG (Status Register) from the stack

and enables interrupts (context switching is allowed).

(2) Delay Function

Nano OS provides two delay functions that are implemented by “busy waiting” operation.

void nos_delay_us(UINT16 timeout_usec);

Parameters

 timeout_usec : delay time in microsecond

Return Values

 None

The nos_delay_us() function is implemented by the following NOS_NOP() macro function.

This NOS_NOP() macro performs no tasks, but it consumes a few CPU clock cycles.

#define NOS_NOP()

Parameters

 Proprietary & Confidential /79
Sensor Network OS

Research Team

49

 None

 The nos_delay_ms() function delays the time in milli-second and implemented by the

nos_delay_us() function.

void nos_delay_ms(UINT16 timeout_msec);

Parameters

 timeout_ msec: delay time in milli-second.

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

50

3.3.2. MCU internal peripherals

3.3.2.1. ADC

Sensor data is usually analog signal, which must be converted into the digital data by using

ADC (Analog to Digital Converter). Atmega128 provides 8 ADC channels, each of which can

be used to connect to different types of devices.

(1) Module initialization

 For initialization, the nos_adc_init() function is used. It activates ADC channels.

void nos_adc_init(void);

Parameters

 None

Return Values

 None

(2) Analog to digital conversion

The nos_adc_convert() function is invoked by setting related registers, and returns the

converted value as soon as the conversion is completed. The returned value is 10-bit data.

UINT16 nos_adc_convert(void);

Parameters

 None

Return Values

Converted 10bit data

(3) ADC channel selection

An adc channel must be selected before the nos_adc_convert() function is called. This is

done by the nos_adc_select_channel() function.

void nos_adc_select_channel(UINT8 channel);;

Parameters

 channel : ADC channel to use

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

51

3.3.2.2. UART

The UART is used for standard I/O interface or debugging purpose in embedded systems.

Nano OS supports serial communication by UART.

(1) Module initialization

The nos_uart_init() function sets UART related registers for initialization. Note that the

number of bits for communication, parity bit, and flow control parameters are already defined

in the source code. It is nessary that you should modify the source code when you change the

parameter values.

void nos_uart_init(void);

Parameters

None

Return Values

None.

(2) Sending data

The uart_putc() is the basic function to send 1 byte data. To send a string, the uart_puts() is

implemented with the uart_putc() function by calling it as many as the number of bytes in the

string. To send signed or unsigned values, the nos_uart_puti() and nos_uart_putu() functions

are provided.

void nos_uart_putc(UINT8 port_num, INT8 byte);

Parameters

port_num : UART port number

byte : 1 byte data to send

Return Values

None.

void nos_uart_puts(UINT8 port_num, INT8 *str);

Parameters

port_num : UART port number

str : string to send

Return Values

None.

void nos_uart_puti(UINT8 port_num, INT16 val);

Parameters

 Proprietary & Confidential /79
Sensor Network OS

Research Team

52

port_num : UART port number

val : signed integer value

Return Values

None.

void nos_uart_putu(UINT8 port_num, UINT16 val);

Parameters

port_num : UART port number

val : unsigned integer value

Return Values

None.

(3) Receiving data

 The nos_uart_gets() function receives one byte data from the UART port. This is

implemented by an interrupt routine, which receives data until it encounters the ‘carriage

return’(_CR).

void nos_uart_gets(UINT8 port_num, INT8* str, UINT8 str_len);

Parameters

port_num : UART port number

str : buffer pointer of data to receive

str_len : maximum size of the data buffer

Return Values

None.

 The UART receiving is perfomed by the uart_recv_handler() in UART0 RX and UART1 RX

interrupt handler.

void nos_uart_getc_callback(UINT8 port_num, void (*func)(UINT8));

Parameters

port_num : UART port number

Return Values

None.

(4) Formatted output

The nos_uart_prinf() function prints a formatted string through the UART communication

like the standard C library function.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

53

#define nos_uart_printf(format, ...)

Parameters

format : formatted string

… : output parameters

Return Values

None.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

54

3.3.2.3. SPI

SPI is a serial pheriperal interface for high speed communication between MCU and

pheriperal devices. This interface uses 4 pins and supports full-duplex mode.

(1) SPI initialization

 The SPI_INIT() function initializes the SPI interface by setting SPI related registers.

According to the devices communicating with each other via SPI, some parameters such as

working mode and clock mode can be set.

void SPI_INIT(is_master, clk, spi_mode);

Parameters

 is_master : is spi mater or slave?

 clk : spi clock selection

 spi_mode : spi data mode selection

Return Values

None.

Macro Description

SPI_MASTER SPI works as a master

SPI_SLAVE SPI works as a slave

If SPI works as a master, we must give clocks to slave devices. The clock is referenced by

the system clock (or asynchronous clock) and can be set to one of the followings.

Macro Description

SPI_CLK_DIV_2 1/2 of the reference clock

SPI_CLK_DIV_4 1/4 of the reference clock

SPI_CLK_DIV_8 1/8 of the reference clock

SPI_CLK_DIV_16 1/16 of the reference clock

SPI_CLK_DIV_32 1/32 of the reference clock

SPI_CLK_DIV_64 1/64 of the reference clock

SPI_CLK_DIV_128 1/128 of the reference clock

For SPI to recognize the received data, the polarity and phase of the clock signal must be

defined and can be set to one of the followings.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

55

Macro Description

SPI_DATA_MODE0 sampling at leading edge(rising), setup at trailing edge(falling)

SPI_DATA_MODE1 setup at leading edge(rising), sampling at trailing edge(falling)

SPI_DATA_MODE2 sampling at leading edge(falling), setup at trailing edge(rising)

SPI_DATA_MODE3 setup at leading edge(falling), sampling at trailing edge(rising)

 To communicate with CC2420, MCU is set to be a master, and the speed of SPI is 1/2 of the

system clock with SPI data mode 0.

(1) SPI slave device activation/deactivation

When MCU is a SPI slave device, the SPI_ENABLE() or SPI_DISABLE() functions are

necessary to communicate with slave devices. The SPI_ENABLE() function clears /SS pin

(Active low, connected with CSn pin of CC2420) of SPI, which activates the slave device.

The SPI_DISABLE() function sets /SS pin of SPI, which deactivates the slave device.

void SPI_ENABLE();

Parameters

 None.

Return Values

None.

void SPI_DISABLE();

Parameters

 None.

Return Values

None.

(2) Sending data

There are four available functions for data communication. The SPI_TX() function sends

one byte of data via SPI interface. To send two bytes of data, the SPI_TX_WORD() and

SPI_TX_WORD_LE() function are defined. The difference of the two is that the former sends

the upper byte first while the latter the lower byte first. The SPI_TX_MANY() function is

used to send more than 3 bytes of data.

void SPI_TX(UINT8 x);

 Proprietary & Confidential /79
Sensor Network OS

Research Team

56

Parameters

 x : data to send

Return Values

None.

void SPI_TX_WORD_LE(UINT16 x);

Parameters

 x : data to send

Return Values

None.

void SPI_TX_WORD(UINT16 x);

Parameters

 x : data to send

Return Values

None.

void SPI_TX_MANY(BYTE *p, UINT8 c);

Parameters

 p : data to send

 c : data length

Return Values

None.

To send data through SPI interface, previous data transmission must be completed. Thus, if it

was not completed yet, it is necessary to wait. The SPI_WAIT() macro will do the function.

#define SPI_WAIT()

Parameters

None.

(3) Receiving data

Likewise, there are four functions for receiving data. The SPI_RX () function receives one

byte of data through SPI interface. To receive two bytes of data, the SPI_RX_WORD() and

SPI_RX_WORD_LE() function are defined. The difference between the two is that the

former receives the upper byte first, while the latter receives the lower byte first. The

SPI_RX_MANY() function is used to receive more than 3 bytes of data.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

57

BYTE SPI_RX(void);

Parameters

 None.

Return Values

1 byte of data received

 UINT16 SPI_RX_WORD_LE(void);

Parameters

 None.

Return Values

two bytes of data

UINT16 SPI_RX_WORD(void);

Parameters

 None.

Return Values

two bytes of data

void SPI_RX_MANY(BYTE *p, UINT8 c);

Parameters

 p : variable to be stored

 c : data length

Return Values

None.

The SPI_RX_GARBAGE() macro is used to remove the received data instead of using it. It

is similar to the SPI_RX(), but simply returns without duplicating the received data into a

variable.

void SPI_RX_GARBAGE(void);

Parameters

 None.

Return Values

None.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

58

3.3.2.4. EEPROM

Nano OS provides interfaces of writing data into EEPROM if the target platform has an

EEPROM device. EEPROM can be used for storing configuration data, which is rarely

changed through the lifetime of sensor node.

(1) Writing data

UINT16 nos_eeprom_write(UINT16 addr, const BYTE *buf, UINT16 len)

Parameters

 addr : EEPROM address to write data to

 buf : data pointer

 len : data length

Return Values

actual length of data written

 The nos_eeprom_write() function writes data into the designated address. The return value

specifies the actual data length. This function is implemented, using nos_eeprom_write_byte()

function.

UINT16 nos_eeprom_write_byte(UINT16 addr, BYTE data)

Parameters

 addr : EEPROM address to write

 data : data to write

Return Values

 None

(2) Reading data

UINT16 nos_eeprom_read(UINT16 addr, BYTE *buf, UINT16 len)

Parameters

 addr : EEPROM address to read from

 buf : buffer pointer for data read

 len : length of data to read

Return Values

 Actual length of data read

 The nos_eeprom_read() function reads data from the designated address by the number of

len bytes. The return value is the actual length of data read. The nos_eeprom_read() function

 Proprietary & Confidential /79
Sensor Network OS

Research Team

59

is implemented using the nos_eeprom_read_byte() function.

UINT16 nos_eeprom_read_byte(UINT16 addr, BYTE *data)

Parameters

 addr : EEPROM address to read from

 data : buffer pointer for data to read

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

60

3.3.3. Sensor

Nano OS provides 8 types of sensors. You need to select the type of sensor to turn on/off the

sensor. The type of a sensor has a corresponding channel. In other words, it means that the

channel can be used as the type of a sensor.

3.3.3.1. Gas sensor

(1) Sensor initialization

 Before using gas sensor, the nos_gas_init() must be used.

void nos_gas_init();

Parameters

 None

Return Values

 None

(2) Get sensor data

To get gas data, the nos_ gas_get_info() function is used. It returns the value converted

from ADC.

UINT16 nos_gas_get_info();

Parameters

 None

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

61

3.3.3.2. Humidity sensor

(1) Sensor initialization

Before using humidity sensor, the nos_hum_init() must be invoked. This function initializes

timer/counter for measuring humidity, and pins connected to the humidity sensor.

void nos_hum_init();

Parameters

 None

Return Values

 None

(2) Get sensor data

 The humidity can be obtained from the frequency of ADC values of the humidity sensor.

Thus, after getting humidity data, it must be converted into humidity values by using

nos_hum_get_info() function.

UINT16 nos_hum_get_info();

Parameters

 None.

Return Values

 Humidity value for a particular humidity frequency

The nos_hum_get_info() returns a humidity value, referring to a HumTable that shows

humidity values vs humidity frequencies. The humidity frequency can be obtained by the

nos_hum_get_freq() function. The get nos_hum_get_info() function returns the humidity

value for one second by using timer/counter.

UINT16 nos_hum_get_freq();

Parameters

 None

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

62

3.3.3.3. Light sensor

(1) Sensor initialization

Before using light sensor, the nos_light_init() must be invoked.

void nos_light_init();

Parameters

 None

Return Values

 None

(2) Get sensor data

 To get light data, the nos_light_get_info() function is used. It returns the value converted

from ADC.

UINT16 nos_light_get_info();

Parameters

 None

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

63

3.3.3.4. Temperature sensor

(1) Sensor initialization

Before using temperature sensor, the nos_temp_init() must be invoked.

void nos_temp_init(void);

Parameters

 None

Return Values

 None

(2) Get sensor data

To get gas data, the nos_temp_get_info() function is used. It returns the value converted

from ADC.

UINT16 nos_temp_get_info(void);

Parameters

 None

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

64

3.3.3.5. Infrared Sensor

(1) Sensor initialization

Before using infrared sensor, the nos_pir_init() must be used. Since the infrared sensor tells

whether an object is sensed by interrupt, the nos_pir_init() function initializes the pin that is

connected to the corresponding interrupt.

void nos_pir_init(void);

Parameters

 None

Return Values

 None

(2) Sense an object

Sensing an object is an asynchronous event. Thus, the callback function must be registered

so that it can be called when the event occurs. In the current implementation, the external

interrupt 7 is connected to the PIR sensor. The nos_pir_callback() function defines a callback

function to process something when interrupted.

ISR(INT7_vect);

void nos_pir_callback(void (*func)(void));

Parameters

 func : callback function to be invoked

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

65

3.3.3.6. Ultrasonic sensor

 (1) Sensor initialization

Before using ultrasonic sensor, the nos_us_init() must be invoked. The function initializes

pins, interrupt, and timer for ultrasonic sensor.

void nos_us_init(void);

Parameters

 None

Return Values

 None

(1) Start sensor signal On/Off

 In ultrasonic sensor, the NOS_US_TX_ON() function must be called to measure round trip

time of ultrasonic signals. After the signal is transmitted back to the sensor, the

NOS_US_TX_OFF() function must be called to turn off the sensor.

#define NOS_US_TX_ON();

Parameters

 None

Return Values

 None

#define NOS_US_TX_OFF();

Parameters

 None

Return Values

 None

(2) Measure round trip time

 A timer is used to measure the round trip time of the ultrasonic signal. This is done by

calling the nos_us_get_info() function for timer initialization, and the nos_us_get_info()

function is called to measure the round trip time when the feedback signal is sensed.

void nos_us_get_info(void);

Parameters

 None

Return Values

 Proprietary & Confidential /79
Sensor Network OS

Research Team

66

 None

UINT16 nos_us_get_info(void);

Parameters

 None

Return Values

 Measured counter value.

(3) Get sensor data

 In the ultrasonic sensor, the distance is measured by sending a ultrasonic signal by using

the nos_us_trigger() function and detecting the feedback signal by interrupt when the signal

is transmitted.

void nos_us_trigger(void (*func)(void *));

Parameters

 func : callback function to be used for measuring the distance

Return Values

 None

The ultrasonic sensor is connected to the external interrupt 7.

 ISR(INT7_vect)

 In the interrupt service routine, the nos_us_callback() function defines a callback function

that calculates the distance. It reads the timer value by calling the nos_us_get_info() function,

turning off the starting signal, and calculates the distance from an object by ultrasonic speed

and timer value.

void nos_us_callback(void (*func)(void));

Parameters

 func : callback function to be invoked

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

67

3.3.4. Actuator

3.3.4.1. Module initialization

To use the actuator, the following NOS_ACTUATOR_INIT() function must be called.

#define NOS_ACTUATOR_INIT(act_id);

Parameters

 act_id : actuator number

Return Values

 None.

3.3.4.2. Actuator control

Sensor nodes can be connected to various kinds of actuators. Like LEDs, they are connected

to the general I/O ports in MCU. To control the actuators, the NOS_ACTUATOR_ON();

function and NOS_ACTUATOR_OFF() macro are provided.

#define NOS_ACTUATOR_ON(act_id);

Parameters

 act_id : actuator number

Return Values

 None.

#define NOS_ACTUATOR_OFF(act_id);

Parameters

 act_id : actuator number

Return Values

 None.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

68

3.3.5. RF communication

3.3.5.1. RF chip driver (CC2420)

CC2420 is a RF chip from Chipcon. Nano OS provides CC2420 driver for controlling,

initializing, channel selection, status check, etc.

(1) Module initialization

All RF related functions are called after the cc2420_init() function is called. The function

performs the pin init, SPI init, interrupt init, and turning on crystal oscillator, and waits until

the crystal oscillator is stable.

void cc2420_init(void)

Parameters

 None.

Return Values

 None.

(2) RF channel configuration

The channel number, PAN address and MAC Short Address are required for RF

communication,. A RF channel can be selected as one of 16 channels that ranges from 11 to

26. The cc2420_channel_init() function is used to select a RF communication channel.

void cc2420_channel_init(UINT8 channel)

Parameters

 channel : communication channel (11 ~ 26).

Return Values

 None.

(3) Tranceiver activation/deactivation

 The CC2420 tranceiver can be turned on/off to reduce the power consumption. The

CC2420_SWITCH_ON() and CC2420_SWITCH_OFF() macro is used respectively.

#define CC2420_SWITCH_ON()

Parameters

 None

Return Values

 None

 Proprietary & Confidential /79
Sensor Network OS

Research Team

69

#define CC2420_SWITCH_OFF()

Parameters

 None

Return Values

 None

(4) Auto-ACK activation/deactivation

 The CC2420 tranceiver has auto-ack functionality supported by hardware. The

CC2420_AUTOACK_REP_ON() and The CC2420_AUTOACK_REP_OFF() macro is

used to enable or disable this functionality respectively.

#define CC2420_AUTOACK_REP_ON()

Parameters

 None

Return Values

 None

#define CC2420_AUTOACK_REP_OFF()

Parameters

 None

Return Values

 None

(5) CC2420 registers reading/writing

 The CC2420 has 3 kinds of registers : command strobe register, normal register, and FIFO

register. To use those registers, you need to specify the address of the register. The

CC2420_TX_ADDR() macro function specifies the address.

#define CC2420_TX_ADDR(a)

Parameters

 a : register address

 The CC2420_TX_ADDR() macro, like SPI_TX(), sends one byte of address data via SPI,

and waits until the transmission is completed and exits.

The CC2420_RX_ADDR() is a macro function for reading address data.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

70

#define CC2420_RX_ADDR(a)

Parameters

 a : register address

 The CC2420_RX_ADDR() macro is same as CC2420_TX_ADDR() macro, but reading or

writing mode depends on the value of sixth bit of the CC2420 address. If this bit is one, it

goes into reading mode.

(6) CC2420 command strobe registers

The command strobe register is a sort of control commands that controls CC2420 by

specifying the address of the register. To access the command strobe register of CC2420, the

CC2420_STROBE() macro is used.

#define CC2420_STROBE(s)

Parameters

 s : command strobe

 The CC2420_STROBE() macro simply sends a command strobe to CC2420 through SPI

interface after selecting chip, which makes CC2420 do a particular work. To write data into a

register, you have only to use the CC2420_SETREG() macro.

#define CC2420_SETREG(a, v)

Parameters

 a : register address

 v : register value

#define CC2420_GETREG(a, v)

Parameters

 a : register address

 v : register value

(7) Get CC2420 status

 CC2420 sends the status bytes (the status of the chip) to MUC through SPI interface while

receiving data. To read the status bytes, the CC2420_UPD_STATUS() macro is provided.

The CC2420_UPD_STATUS() macro reads status bytes after SNOP command strobe is sent.

#define CC2420_UPD_STATUS(s)

 Proprietary & Confidential /79
Sensor Network OS

Research Team

71

Parameters

 s : variable for storing the status of CC2420

(8) CC2420 FIFO reading/writing

CC2420 has two FIFOs, TXFIFO and RXFIFO. Since data is strored in RAM region in

CC2420, it can be accessed by memory operation. But they are not distinctive in that the data

read is automatically removed in FIFO. To write data into TXFIFO in CC2420,

SPI_WRITE_FIFO() macro is used.

#define CC2420_WRITE_FIFO(p, c)

Parameters

 p : pointer to the byte array to write to FIFO

 c : the number of bytes to write

To read multiple bytes of data, the CC2420_READ_FIFO() and

CC2420_READ_FIFO_NO_WAIT() can be used. The CC2420_READ_FIFO() and

CC2420_READ_FIFO_NO_WAIT() looks similar, but the former checks the interrupt pin

whenever it reads one byte of data, while the latter does not.

#define CC2420_READ_FIFO(p,c)

Parameters

 p : pointer to the byte array to read

 c : the number of bytes to write

#define CC2420_READ_FIFO_NOWAIT(p, c)

Parameters

 p : pointer to the byte array to read

 c : the number of bytes to write

 To read only 1 byte of data in FIFO, the CC2420_READ_FIFO_BYTE() is used. To remove

the stored data, the CC2420_READ_FIFO_GARBAGE() is used.

#define CC2420_READ_FIFO_BYTE(b)

Parameters

 b : single data byte read from FIFO

 Proprietary & Confidential /79
Sensor Network OS

Research Team

72

#define CC2420_READ_FIFO_GARBAGE(c)

Parameters

 c : the number of bytes to take away

(9) CC2420 RAM reading/writing

 To write data into RAM in CC2420, the CC2420_WRITE_RAM() and

CC2420_WRITE_RAM_LE() macros are used. The former sends the upper bytes first, while

the latter sends the lower bytes first.

#define CC2420_WRITE_RAM(p, a, c, n)

Parameters

 p : pointer to the variable to be written

 a : the CC2420 RAM address

 c : the number of bytes to write

 n : counter variable which is used in for/while loops

#define CC2420_WRITE_RAM_LE(p, a, c, n)

Parameters

p : pointer to the variable to be written

 a : the CC2420 RAM address

 c : the number of bytes to write

 n : counter variable which is used in for/while loops

To read data from RAM in CC2420, the CC2420_READ_RAM() and

CC2420_READ_RAM_LE() macros are used. The former receives the upper bytes first,

while the latter receives the lower bytes first.

#define CC2420_READ_RAM(p, a, c, n)

Parameters

 p : pointer to the variable to be read

 a : the CC2420 RAM address

 c : the number of bytes to write

 n : counter variable which is used in for/while loops

#define CC2420_READ_RAM_LE(p, a, c, n)

Parameters

 Proprietary & Confidential /79
Sensor Network OS

Research Team

73

 p : pointer to the variable to be read

 a : the CC2420 RAM address

 c : the number of bytes to write

 n : counter variable which is used in for/while loops

(10) CC2420 reset

The CC2420_RESET() function resets the MAIN register, resetting CC2420.

#define CC2420_RESET()

Parameters

 None.

 Proprietary & Confidential /79
Sensor Network OS

Research Team

74

3.3.5.2. RF pin configuration

Each platform has one MCU and one RF chip. They communicate with each other via

general port interface as well as Serial Peripheral Interface. RF pins interfacing to MCU are

configured and initialized. (now, just for CC2420)

(1) Set, clear or check the status MACRO

Besides SPI-related pins, there are several pins between MCU and CC2420. They are pins for

FIFO, FIFOP, RESET, VREG, SFD, and CCA.

#define RF_RESET_SET()

#define RF_RESET_CLR()

#define RF_VREG_SET()

#define RF_VREG_CLR()

#define RF_RESET_IS_SET()

#define RF_VREG_IS_SET()

#define RF_FIFOP_IS_SET()

#define RF_FIFO_IS_SET()

#define RF_SFD_IS_SET()

#define RF_CCA_IS_SET()

(2) RF initialize

nos_rf_init() initializes CC2420 and configures pins between RF and MCU.

void nos_rf_init(void);

Parameters

 None.

Return Values

None.

Description

 Initialize RF.

(3) RF interrupt handler

The nos_rf_callback() defines a callback function that handles a received frame when FIFOP

interrupt occurs(a frame received in CC2420 RXFIFO). The INT0_vect is FIFOP interrupt

handler

void nos_rf_callback(void);

Parameters

 void (*func)(void)

Return Values

 Proprietary & Confidential /79
Sensor Network OS

Research Team

75

None.

Description

 Register ISR call back function

ISR(INT0_vect)

 Proprietary & Confidential /79
Sensor Network OS

Research Team

76

3.3.6. Misc

3.3.6.1. LED

To use LEDs, the NOS_LED_INIT() function should be called for initialization. The _

function initializes each port pins connected to the LEDs and turns off them.

void NOS_LED_INIT();

Parameters

 None

Return Values

 None

LEDs are connected to the general I/O port interface and can be turned on/off by writing

zero or one into each port of the corresponding registers. The following functions are

provided for controlling LED devices.

void NOS_LED_ON(n);

Parameters

 n : LED number

Return Values

None.

Description

 Turn on n-th LED

void NOS_LED_OFF(n);

Parameters

 n : LED number

Return Values

None.

Description

Turn off n-th LED

void NOS_LED_TOGGLE(n);

Parameters

 n : LED number

Return Values

None.

Description

 Proprietary & Confidential /79
Sensor Network OS

Research Team

77

Toggle n-th LED

3.3.6.2. Battery power status

The battery sensor requires no initialization

(1) Get battery data

 To get a battery data, the nos_bat_get_info() is provided.

UINT16 nos_bat_get_info();

Parameters

 None

Return Values

 None

The nos_bat_get_info() function uses ADC. The value converted from ADC is returned after

some calculations.

 END 

